Nuclear Stability and Binding Energy

- **Binding energy** = the amount of energy released when a nucleus is formed.
- When two protons and two neutrons combine to form a helium nucleus, energy is released. This is the total binding energy for the helium nucleus.

Nuclear Energy

- The binding energy per nucleon, which is the total binding energy divided by the number of nucleons (protons and neutrons), is a good indication of nuclear stability.
- For example, because a uranium-235 atom has many more nucleons than an iron-56 atom, it has a much larger total binding energy, but an iron-56 atom is significantly more stable than a uranium-235 atom. This is reflected in the higher binding energy per nucleon for iron-56.
- Binding energy per nucleon generally increases from small atoms to atoms with a mass number around 56.
- Binding energy per nucleon generally decreases from atoms with a mass number around 56 to larger atoms.

Nuclear Energy

- Because binding energy per nucleon generally increases from small atoms to atoms with a mass number around 56, fusing small atoms to form larger atoms (*nuclear fusion*) releases energy.
- Because binding energy per nucleon generally decreases from atoms with a mass number around 56 to larger atoms, splitting large atoms to form medium-sized atoms (*nuclear fission*) also releases energy.

Nuclear Fusion

$$^{2}_{1}H$$
 + $^{3}_{1}H$ \longrightarrow $^{4}_{2}He$ + $^{1}_{0}n$
Deuterium + Tritium \longrightarrow Helium + Neutron

 Products are much more stable than reactants, so products have much lower PE, and a lot of energy is released.

Nuclear Fusion

$$^{2}_{1}H$$
 + $^{3}_{1}H$ \longrightarrow $^{4}_{2}He$ + $^{1}_{0}n$
Deuterium + Tritium \longrightarrow Helium + Neutron

- Requires a very high temperature (about 10⁶ °C) to initiate the fusion.
 - The electromagnetic repulsion between the positive nuclei is felt at a relatively long range.
 - The strong force attraction is only significant when the nuclei are very close.
 - Therefore, unless the nuclei are rushing together at a very high velocity (very high temperature), the +/+ repulsion slows the nuclei down, stops them, and accelerates them away from each other before they are close enough for the strong force to play a role.

Nuclear Fusion Powers the Sun

Nuclear Fission

Nuclear Power Plant

Pressurized Water Reactor (PWR)

Nuclear Power Plant

Boiling Water Reactor (BWR)

Nuclear Power Plant (2)

 To get a sustained chain reaction, the percentage of ²³⁵U must be increased to about 3%, in part because the unfissionable ²³⁸U absorbs too many neutrons.

$${}^{238}_{92}U + {}^{1}_{0}n \rightarrow {}^{239}_{92}U$$

$${}^{239}_{92}U \rightarrow {}^{239}_{93}Np + {}^{0}_{-1}e$$

$${}^{239}_{93}Np \rightarrow {}^{239}_{94}Pu + {}^{0}_{-1}e$$

UF₆ enriched in U-235 (sent to next centrafuge) UF₆ added UF₆ depleted UF₆ depleted in U-235 in U-235 More More ²³⁸UF₆ ²³⁸UF₆ on on outside outside More More ²³⁵UF₆ ²³⁵UF₆ in center in center Gas Heater Centrifuge Rotating

Nuclear Power Plant (3)

- A typical 1000-megawatt power plant will have from 90,000 to 100,000 kg of enriched fuel packed in 100 to 200 zirconium rods about 4 meters long.
- Moderator slows neutrons
 - ²³⁵U atoms are more likely to absorb slow neutrons.
 - Can be water

Nuclear Power Plant (4)

Control Rods

- Substances, such as cadmium or boron, absorb neutrons.
- Control rate of chain reaction
- Dropped at first sign of trouble to stop fission reaction