Section 2.5 (Chemistry-First) and 3.5 (Atoms-First) Common Elements ## An Introduction to Chemistry By Mark Bishop # To Describe Structure of Elements - What particles? - Noble gases atoms - Other nonmetals molecules - Diatomic elements H₂, N₂, O₂, F₂, Cl₂, Br₂, I₂ - S₈, Se₈, P₄ - Metallic elements cations in a sea of electrons # To Describe Structure of Elements (2) - Gases H₂, N₂, O₂, F₂, Cl₂, He, Ne,Ar, Kr, and Xe - Liquids Br₂ and Hg - Solids the rest - Standard description of (1) solid, (2) liquid, (3) gas, or (4) metal. #### Helium Gas, He | 18 | |----------|----|----|-----|-----|----------|----------|-----|----------|----------|-----|-----------|-----------|-----|----------|-----|-----|-----|----|----| | | | | | | | | | | | | _ | | | | | | | | 8A | | | 1 | 2 | | | | | | | | | , | 1 | | 13 | 14 | 15 | 16 | 17 | 2 | | , | 1A | 2A | | | | | | | | | 1 | 1
H | | 3A | 4A | 5A | 6A | 7A | He | | 2 | 3 | 4 | | | | | | | | | | | | 5 | 6 | 7 | 8 | 9 | 10 | | 2 | Li | Be | | | | | | | | | | | | В | С | N | 0 | F | Ne | | 3 | 11 | 12 | | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | | Na | Mg | | 3B | 4B | 5B | 6B | 7B | 8B | 8B | 8B | 1B | 2B | Al | Si | P | S | Cl | Ar | | 4 | 19 | 20 | | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | | 1 | K | Ca | | Sc | Ti | V | Cr | Mn | Fe | Со | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | | 5 | 37 | 38 | | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | | | Rb | Sr | | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | | 6 | 55 | 56 | l I | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | | | Cs | Ba | | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | | 7 | 87 | 88 | | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | | | | <i>'</i> | Fr | Ra | | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Uub | Uut | Uuq | Uup | Uuh | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | 6 | | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | | | | | | Ü | | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er | Tm | Yb | | | | | | 7 | 1 | 89 | 90
Th | 91
D- | 92 | 93
N. | 94
D- | 95 | 96
C== | 97
D1- | 98 | 99
E- | 100 | 101 | 102 | | | | | | | | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | | | # To Describe Structure of Elements - What particles? - Noble gases atoms - Other nonmetals molecules - Diatomic elements H₂, N₂, O₂, F₂, Cl₂, Br₂, I₂ - S₈, Se₈, P₄ - Metallic elements cations in a sea of electrons ## Description of Gas - Particles constantly moving in straight-line paths - About 0.1% of volume occupied by particles...99.9% empty. - Average distance between particles is about 10 times their diameter. - No significant attractions or repulsions. - Constant collisions that lead to changes in direction and velocity. - Variable volume and shape, due to lack of attractions and a great freedom of motion. #### Helium Gas, He # To Describe Structure of Elements - What particles? - Noble gases atoms - Other nonmetals molecules - Diatomic elements H₂, N₂, O₂, F₂, Cl₂, Br₂, I₂ - S₈, Se₈, P₄ - Metallic elements cations in a sea of electrons #### Hydrogen Molecules - Each hydrogen atom has one electron. - Electrons are more stable when they are paired. - To form a pair of electrons, two hydrogen atoms combine to form one a hydrogen molecule, H₂. $$H \cdot \downarrow H \rightarrow H \cdot H - H$$ ## Covalent Bonds and Molecules - Covalent bond = a link between atoms due to the sharing of two electrons - Molecule = an uncharged collection of atoms held together by covalent bonds - The link that holds two hydrogen atoms together is a covalent bond. We call the pair of hydrogen atoms a hydrogen molecule. - Its chemical formula is H₂. ## Hydrogen, H₂, Molecule Hydrogen nuclei The two electrons generate a charge cloud surrounding both nuclei. Space-filling model Emphasizes individual atoms Ball-and-stick model Emphasizes bond #### Hydrogen Gas, H₂ ### Diatomic Molecules - Molecules that have two atoms are called diatomic. - Hydrogen (H₂), nitrogen (N₂), oxygen (O₂), fluorine (F₂), chlorine (Cl₂), bromine (Br₂), and iodine (I₂) are diatomic. #### **Diatomic Molecules** | | | | | | | | | | | | | | | | | | | 18 | |---|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|------------|------------|----------|----------| | | 1 | 2 | | | | | | | | | | | 13 | 14 | 15 | 16 | 17 | 8A | | | 1A | 2A | | | | | | | | 1 | 1
H | | 3A | 4A | 5A | 6A | 7A | 2
He | | 2 | 3
Li | 4
Be | | | | | | | | | | | 5
B | 6
C | 7
N | 8
O | 9
F | 10
Ne | | | 11 | 12 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 3 | Na | Mg | 3B | 4B | 5B | 6B | 7B | 8B | 8B | 8B | 1B | 2B | Al | Si | P | S | Cl | Ar | | 4 | 19
K | 20
Ca | 21
Sc | 22
Ti | 23
V | 24
Cr | 25
Mn | 26
Fe | 27
Co | 28
Ni | 29
Cu | 30
Zn | 31
Ga | 32
Ge | 33
As | 34
Se | 35
Br | 36
Kr | | 5 | 37
Rb | 38
Sr | 39
Y | 40
Zr | 41
Nb | 42
Mo | 43
Tc | 44
Ru | 45
Rh | 46
Pd | 47
Ag | 48
Cd | 49
In | 50
Sn | 51
Sb | 52
Te | 53
I | 54
Xe | | 6 | 55
Cs | 56
Ba | 71
Lu | 72
Hf | 73
Ta | 74
W | 75
Re | 76
Os | 77
Ir | 78
Pt | 79
Au | 80
Hg | 81
Tl | 82
Pb | 83
Bi | 84
Po | 85
At | 86
Rn | | 7 | 87
Fr | 88
Ra | 103
Lr | 104
Rf | 105
Db | 106
Sg | 107
Bh | 108
Hs | 109
Mt | 110
Ds | 111
Rg | 112
Uub | 113
Uut | 114
Uuq | 115
Uup | 116
Uuh | | | | | | | | | | | | 4 | | | | | | | | | ' | | | | | 6 | 57
La | 58
Ce | 59
Pr | 60
Nd | 61
Pm | 62
Sm | 63
Eu | 64
Gd | 65
Tb | 66
Dy | 67
Ho | 68
Er | 69
Tm | 70
Yb | | | | | | 7 | 89
Ac | 90
Th | 91
Pa | 92
U | 93
Np | 94
Pu | 95
Am | 96
Cm | 97
Bk | 98
Cf | 99
Es | 100
Fm | 101
Md | 102
No | | | # Bromine - The element bromine, Br₂, is composed of diatomic molecules. - Bromine is one of the two elements that are liquids. # To Describe Structure of Elements (2) - Gases H₂, N₂, O₂, F₂, Cl₂, He, Ne,Ar, Kr, and Xe - Liquids Br₂ and Hg - Solids the rest - Standard description of (1) solid, (2) liquid, (3) gas, or (4) metal. ## Description of Liquid - Up to 70% of volume occupied by particles...30% empty - Attractions are strong but not strong enough to keep particles from moving throughout the liquid. - Constant collisions that lead to changes in direction and velocity. - Constant volume, due to significant attractions between the particles that keeps the particles at a constant average distance, but not constant shape, due to the freedom of motion. #### Bromine Liquid, Br₂ #### lodine - Like all of the halogen (group 17), the element iodine, I₂, is composed of diatomic molecules. - Because iodine is not on our list of gases or liquids, it must be a solid at room temperature and pressure. - Gases H₂, N₂, O₂, F₂, Cl₂, He, Ne, Ar, Kr, andXe - Liquids Br₂ and Hg - Solids the rest ### Description of Solid - Particles constantly moving. - Up to 70% of volume occupied by particles...30% empty. - Strong attractions keep particles trapped in cage. - Constant collisions that lead to changes in direction and velocity. - Constant volume and shape due to strong attractions and little freedom of motion. #### Iodine Solid https://preparatorychemistry.com/element_properties_Canvas.html # Typical Metallic Solid and Its "Sea of Electrons" Sea-of-Electrons Model