GLOSSARY/INDEX

A	taste of 345	Alcohol Compounds that contain a
Abbreviated electron configuration, of	triprotic. See Triprotic acid	hydrocarbon group with one or more
multi-electron atoms 151–154	types 250	-OH groups attached. 196, 639. See
Absolute zero Zero kelvins (0 K), the	weak 251–253	also Methanol, Ethanol, and 2-pro-
lowest possible temperature, equiva-	Acid-base reaction 348–356	panol
lent to -273.15 °C. It is the point	strong acid with hydroxide base	hydrogen bonds and 531
beyond which motion can no longer	349–353	Aldehyde A compound that has a hy-
be decreased. 18	uses 348	drogen atom or a hydrocarbon group
Accuracy How closely a measured	writing equations 351	connected to a -CHO group. 641
value approaches the true value of the	Acidic paper, preserving books with 355	Aldol, molecular structure of 645 Alka-Seltzer 502
property. 20	Acidic solution A solution with a significant concentration of hydronium	Alkali metals Group 1 (or 1A) on the
Acetaldehyde, determining Lewis struc-	ions, H_3O^+ . 248, 340	periodic table; See also Lithium, So-
ture 206–207	Acid rain 255	dium, Potassium, and Cesium 85
Acetamide 644	pH and 346	ion charges of 182–183
Acetate ion, solubility of compounds	Acrylamide 597	Alkaline earth metals Group 2 (or 2A)
with 317	Activated complex 587	on the periodic table; See also Beryl-
Acetic acid 250–253, 640	Activation energy The minimum	lium, Magnesium, and Calcium 85
dissolved in water 252	energy necessary for reactants to reach	ion charges of 183
formulas 250	the activated complex and proceed to	Alkane A hydrocarbon (a compound
freezing point of 250	products. 588	composed of carbon and hydrogen) in
glacial 250	Active site A specific section of the pro-	which all of the carbon-carbon bonds
molecular structure of 250	tein structure of an enzyme in which	are single bonds. 637
as organic acid 250	the substrate fits and reacts. 666	Alkene A hydrocarbon that has one or
production 504, 630	Actual yield The amount of product	more carbon-carbon double bonds.
solubility in water 569	that is actually obtained in a chemical	638
taste of 248	reaction. 428	Alkyne A hydrocarbon that has one or
uses 250, 630	Adams, Mike 650	more carbon-carbon triple bonds.
as weak acid 251	Addition, rounding off for 45–46	638
Acetone 642	Addition polymer A polymer that con-	Alpha emission The process of releas-
boiling point of 522	tains all of the atoms of the original	ing an alpha particle by atoms that
evaporation of 512	reactant in its structure. This category	have too many protons to be stable.
use 543	includes polyethylene, polypropylene,	696
vapor pressure of 516 Acetylene 192, 638	and poly(vinyl chloride). 669–670	nuclear equations for 699–701
molecular structure of 192	Adipic acid 276	Alpha helix 656–657
water solubility of 556	Adults	Alpha particle The emission from ra-
Acid. See also Arrhenius acid	effects of ionizing radiation on 706 fingerprints of 517	dioactive nuclides that is composed of
binary. See Binary acid	Aerosol can 517	two protons and two neutrons in the form of a helium nucleus. 696
bleach and 356	Agent Orange 295	effects on body 706–707
Brønsted-Lowry 356–360	Aging, oxidizing agents and 376	penetration of the body 707
conjugate acids and bases 357	Agitation, rate of solution and 566–567	Alternate Synthetic Pathways Award 597
carboxylic acid. See Carboxylic acid	AIDS 649	Alum. See Aluminum sulfate
characteristics 248	Air 485–486	Aluminum 86
classification of strong or weak 254,	density of 48	ion formation 91, 183
344–345	gases in 486	Aluminum bromide, production and use
defined 356	in lungs 469	399
diprotic. See Diprotic acid	internal combustion engine and	Aluminum chloride 243
identifying 344–345	468	Aluminum fluoride, production and use
monoprotic. See Monoprotic acid	Air bags 502	447
names and formulas of 256–258	Air pollution	Aluminum hydroxide, dissolving in acid
oxyacid. See Oxyacid	catalytic converters and 385	352
pH 346–347	volatile organic solvents and 490	Aluminum oxide 306
polyprotic. See Polyprotic acid	Alanine (Ala, A)	Aluminum sulfate
in saliva 345	silk and 666	old books and 355
strong 253, 340	structure of 654	production and use 456
Study Sheet, indentifying 344	Alar 292	water purification 420

Anderson, Carl 155

Americium-241 and smoke detectors	Androstenedione 662, 663	Arrhenius base A substance that
711	Aniline, production and use 445, 448	produces hydroxide ions, OH ⁻ ,
Amide A compound with the general	Animal fat 561	when added to water. 342–346. See
formula RCONR, in which each R	Anion An ion formed from an atom	also Base
represents hydrogen atoms or hydro-	that has gained one or more elec-	compared to Brønsted/Lowry bases
carbon groups. 644	trons and thus has become negatively	356–360
in digestion 665	charged. 91	defined 341
as peptide bond 656	formation 182–183	reactions with acids 348–355
Amine A compound with the general	in batteries 389–390	strong and weak 341–344
formula R ₃ N, in which R represents	in classifying types of compounds	Arsenic (As)
a hydrogen atom or a hydrocarbon	180	bonding patterns of 193
group (and at least one R group being	in ionic bond formation 177–178	Asparagine (Asn, N), structure of 655
a hydrocarbon group). 643–644	monatomic 183	Aspartame 681, 687
Amino acid The monomer that forms	naming 236-237, 239-241	Aspartic acid (Asp, D)
the protein polymers. They contain an	polyatomic 185–187	in salt bridges 658
amine functional group and a carbox-	structure of ionic compounds 185	structure of 655
ylic acid group separated by a carbon.	writing formulas 242–243	Asphalt, London forces in 532–533
654–655	Anode The electrode at which oxida-	Asymmetry, in polar molecules 528, 529
in origin of life 616–618	tion occurs in a voltaic cell. It is the	Atmosphere (atm), as unit of pressure
protein fomation and 656	source of electrons and is the negative	461
in silk 666	electrode. 389	Atmospheric pressure 461
1-Aminobutane 643	Antacid 300, 482	boiling-point temperature and
Aminopeptidase 664	Anti-electron (positron) 155	521–522
Ammonia 341–342	Antimatter 155	Atom The smallest part of the element
covalent bond formation 192	Antioxidant, aging and 376	that retains the chemical characteris-
hydrogen bonds and 531	Antiparticle 155	tics of the element itself. 88–90
molecular shape of 211	Application, in scientific method 8–9	atomic numbers of 93
origin of life and 617	Aquamarine 294	chemical bonds between 175–179
pH of 347	Aqueous solution A solution in which	in chemical reactions 300-302
production 480, 597	water is the solvent. 309	counting by weighing 100–103
uses 341, 546	Arene (or aromatic compound) A com-	electron 90
weak base 341–342	pound that contains the benzene ring.	electron configuration 142
Ammonium carbonate, use 629	638–639	electron configurations and orbital
Ammonium chloride, crystal structure	Arginine (Arg, R), structure of 655	diagrams 149, 198
of 186	Argon	excited and ground state 138
Ammonium ion	in air 486	as formula unit 264
covalent bond formation 192	in incandescent light bulbs 472	mass numbers of 93–94
solubility of compounds with 316	in neon lights 485	molar mass of 104-105
Ammonium nitrate, in cold packs 322	Aromatic. See Arene A compound that	nuclear reactions of 696–700
Ammonium perchlorate, space shuttle	contain the benzene ring.	nuclear stability of 694
and 409	Aromatic compounds Compounds that	orbital diagram 142
Ammonium phosphate, fertilizers and	contain the benzene ring See Arene	oxidation numbers of 377–384
377	Arrhenius, Svante August 248	protons, neutrons, and electrons 89
Ammonium sulfide, use 243	Arrhenius acid According to the	radioactive decay of 696–700
Amount of substance, base unit of 10	Arrhenius theory, any substance that	size of 89
Amphere, as unit of measure 11	generates hydronium ions, H ₃ O ⁺ ,	size of nucleus 89
Amphetamine 558	when added to water. 248–255,	structure of 88–92
Amphoteric substance A substance	340–347. <i>See also</i> Acid	Atomic mass The weighted average of
that can act as either a Bronsted-	binary acid 250	the masses of the naturally occurring
Lowry acid or a Bronsted-Lowry base,	compared to Brønsted/Lowry acids	isotopes of an element.
depending on the circumstances. 359	356–360	calculations 105
Amylase 664	defined 248, 340	defined 102
Amylopectin 652–653	names and formulas for 256–258	relative 102
Amylose 652–653	organic (or carbon-based) acid 250	Atomic mass unit (u or amu) One-
Analogies, to electron behavior 132	oxyacids 250	twelfth the mass of an atom of
Anastas, Paul T. 5	0xyacids 250	carbon-12. Carbon-12 is the isotope

reactions with bases 348-355

of carbon that contains 6 protons,

6 neutrons, and 6 electrons. 89,	and sticks for covalent bonds. 96	Benzene 276
101–102	of acetic acid molecule 250	Berkelium (Bk) 701
Atomic number The number of pro-	for acetylene 214	Beryllium (Be)
tons in an atom's nucleus. It estab-	for boron trifluoride 213	electron configuration and orbital
lishes the element's identity. 93	for ethane 213	diagram 144
in nuclear equations 698–702	for organic molecules 636	formation of 718
in nuclides 692–693	of methane 211	Beta emission The conversion of a
Atomic orbitals	of water 212, 308	neutron to a proton, which stays in
1s 134–136	Band of stability On a graph of the	the nucleus, and an electron, called a
2 <i>p</i> 139	numbers of neutrons versus protons	beta particle in this context, which is
2s 137–138	in the nuclei of atoms, the portion	ejected from the atom. 696
3 <i>d</i> 140	that represents stable nuclides. 695	nuclear equations for 699–701
electron cloud 136	Barium ion, solubility of compounds	Beta particle A high-velocity electron
electron spin and 144	with 317	released from radioactive nuclides that
for first 10 elements 145	Barium sulfate 319	have too many neutrons. 696
order of filling 143, 146–148	Barnes, Randy 663	effects on body 706–707
probability and 136	Base 341–345 See also Arrhenius base	penetration of the body 707
relative energies 138	Arrhenius 342	Beta sheet 656
shapes 137	Brønsted-Lowry 356-360	Big Bang 718
Atomic weight See also Atomic mass	carbonate 343	Binary acid Substances that have the
102	classification of strong or weak	general formula of $HX(aq)$, where
Attraction. See also Gravitational attrac-	344–345	X is one of the first four halogens:
tion; Electrostatic attraction; Strong	conjugate 358	HF(aq), $HCl(aq)$, $HBr(aq)$, and
force; Particle-particle attractions	defined 341	HI(<i>aq</i>). 250
between gas particles 460	identifying 343–344	formulas 256
between liquid particles 510	in acid-base reactions 348–356	naming 256
intermolecular 523–533	pH 346–347	Binary covalent compound A com-
particle-particle attraction 523-538	strong 341	pound that consists of two nonmetal-
Aurum 83	Study Sheet, indentifying 344	lic elements.
Automobile Exhaust 173	weak 342–343	memorized names 244
Average, weighted 100	Base units The seven units from which	names without prefixes 246
Avogadro's Law Volume and the	all other units in the SI system of	naming 244–245
number of gas particles are directly	measurement are derived. 10–11	prefixes used to name 245
proportional if the temperature and	table of 11	recognizing from formulas 244
pressure are constant. 467	Basic solution A solution with a	recognizing from names 246
Avogadro's number The number of	significant concentration of hydroxide	systematic names 244–246
atoms in 12 g of carbon-12. To four	ions, OH ⁻ . 341	writing formulas 246–247
significant figures, it is 6.022×10^{23} .	Battery A device that has two or more	Binary ionic compound An ionic
102–103	voltaic cells connected together. The	compound whose formula contains
.	term is also used to describe any	one symbol for a metal and one symbol for a nonmetal. 239
В	device that converts chemical energy	
Bacon, Roger 33	into electrical energy using redox reactions. 388–393. <i>See also</i> Voltaic cell	Binding energy The amount of energy released when a nucleus is formed.
Bacteria 400	defined 388, 389	713
tooth decay and 354	dry cell 390–391	Biocatalyst 597
Baking powder 175	nickel-cadmium batteries 392	Biochemistry The chemistry of biologi-
Balance, electronic 23, 46	rechargeable 392	cal systems. 650–663
Balanced chemical equation	zinc-air 393	Biomolecule 650–663
coefficient 301	Beef fat 560–561	amino acids and protein 654–658
coefficients to conversion factors	Bends, the 572	carbohydrate 650–653
415–416	Benitoite 294	how form 616–618
in equation stoichiometry 414–421	Bent geometry The molecular geom-	steroid 661–662
Balancing chemical equations 302–307	etry formed around an atom with two	triglycerides 659
steps in 303	bond groups and two lone pairs or	Bismuth, in the creation of element 111
Study Sheet 303	two bond groups and one lone pair.	94
Ball-and-stick model A representation	212	Bitter taste 345
of a molecule that uses balls for atoms	Benzedrine 558	Blake, William 119

St. 1		
Bleach	Bromine (Br)	Calcium dihydrogen phosphate, produc-
dangerous combination with acid	structure 97	tion and use 453
356	use 546	Calcium hydrogen sulfite, production
pH of 347	Bromomethane, and threshold limit	and use 407
Blocks, in periodic table 146–147 Blood	value, or TLV 498	Calcium nitrate 243, 312–313
	Brønsted-Lowry acid A substance that	Calcium phosphide (or photophor),
pH of 347 Blue litmus paper, detecting acids with	donates protons, H ⁺ , in a Bronsted-	empirical formula for 273 Calorie (with an uppercase C), Cal
348	Lowry acid-base reaction. <i>See</i> Acid, Brønsted-Lowry	The dietary calorie. In fact, a Calorie
Boiling The conversion of liquid to va-	Brønsted-Lowry acid-base reaction A	is a kilocalorie or 4184 joules. 127
por anywhere in the liquid rather than	chemical reaction in which a proton,	calorie (with a lowercase c), cal A
just at the top surface. 518–522	H ⁺ , is transferred. See Acid-base reac-	common energy unit. Equivalent to
defined 520	tion, Brønsted-Lowry	4.184 joules. 127
how bubbles form 518–520	Brønsted-Lowry base A substance that	Cancer, boron fusion and 717
Boiling-point temperature The	accepts protons, H ⁺ , in a Bronsted-	Capsaicin 559
temperature at which a liquid boils.	Lowry acid-base reaction. See Base,	Carbohydrate Sugar, starch, and
It is also the temperature at which	Brønsted-Lowry	cellulose. Also called saccharides.
the equilibrium vapor pressure of the	Bubbles	650–653
liquid becomes equal to the external	in boiling liquid 520	Carbon (C) 90
pressure acting on the liquid. 520	how form in liquid 518–520	combustion and 383
effect of external pressure 520–522	in soft drinks 572	covalent bond formation 190–191
strengths of attractions and 522	Bunsen burner, hottest part of flame 60	diamond as 89
Bond. See Chemical bond	Bureau International des Poids et	electron configuration and orbital
Bond angle The angle formed by	Mesures (BIPM) 11	diagram 144–145
straight lines (representing bonds)	Butadiene 500	in heavy-ion therapy 94
connecting the nuclei of three adja-	Butane, molecular structure of 191	isotopes of 102
cent atoms. 210	1,4-Butanediol (BD) 279	medical use 94
Bond dipole A polar covalent bond,	Butanoic acid	in pig iron 485
which has an atom with a partial posi-	molecular structure of 559, 640	Carbon-13 709
tive charge and an atom with a partial negative charge. 525	solubility of 559	Carbon-14, radioactive decay of 709 Carbon-14 dating The process of
Bond polarity, predicting 524–528	2-Butanone 642	determining the age of an artifact that
Books, preserving 355	Butylated hydroxytoluene (BHT) 638	contains material from formerly living
Boron (B)	Butyl ethyl ether 636	plants or animals by analyzing the
brain cancer treatment and 717	Butyric acid 640	ratio of carbon-14 to carbon-12 in the
covalent bond formation 194	C	object. 709–710
covalent bonding pattern 195		Carbonate ion 343
electron configuration and orbital	Cadaverine 643	reaction with acids 353
diagram 144	Cadmium (Cd)	solubility of compounds with 317
nuclear power plant control rods	in nickel-cadmium batteries 392	in weak bases 343
and 716	nuclear plant control rods and 716	Carbon black 427
Boron trifluoride 194	Caffeine 573	Carbon dioxide
Bovine pancreatic trypsin inhibitor	removal from coffee 491	as dry ice 125
(BPTI) 656–658	taste of 339	in automobile exhaust 173
Boyle's Law The pressure of a gas is in-	Calamine 296	catalytic converter and 385
versely proportional to the volume it	Calcium (Ca), ion formation 183	in combustion reactions 383
occupies if the number of gas particles	Calcium carbide, production 448	decaffeinating coffee and 491
and the temperature are constant.	Calcium carbonate 300, 322, 592	global warming and 430
462–463	acid rain and 255 as antacid 482	greenhouse gas 573
Brain, intoxicating liquids and 214	formation in pipes of 320	polarity 528
Brain cancer, treatment for 717	in limestone caverns 368	in soft drinks 572
Brandes, Jay A. 617 Breathing 469	natural sources of 320	solid to gas 552 solubility in water 569
Bristlecone pines and carbon-14 dating	oil production and 354	spray painting and 490
710	precipitation reaction 312–315	supercritical 490
Bromide ion, solubility of compounds	solubility in water 569	Carbon dioxide torpedos 573
with 317	Calcium chloride 300	Carbonic acid 573

Carbon monoxide	its structure. This category includes	elements in the compound by their
catalytic converters and 385	polyethylene, polypropylene, and	symbols and indicates the relative
covalent bond formation 193	poly(vinyl chloride). 669	number of atoms of each element
in hydrogen gas production 598	Chain reaction A process in which one	with subscripts. 172–173. See
incomplete combustion and 385	of the products of a reaction initiates	also Chemical nomenclature
Lewis structure of 193	another identical reaction. 715	for acids 256–258
as pollutant 385	Chapter Objectives 6	for binary covalent compounds 246
in synthesis gas 598	Charge	in chemical equations 301
Carbon tetrachloride, use and produc-	in atoms 89	conversion factors from 267–270
tion 502	in chemical bonds 178, 524–527	for monatomic ions 236
Carboxylic acid A compound that have	in HCl molecules 176	of polyatomic ions 238
a hydrogen atom or a hydrocarbon	in hydrogen bonds 529	of polymers 667–670
group connected to a -COOH (or	of ions 182–185	Chemical nomenclature
-CO ₂ H) group. 250, 353, 640	in London forces 532	binary acids 256
in acid-base reactions 353	in molecules 528–529	binary covalent compounds
forming name of 257	in water molecules 212, 307	244–248
Carboxypeptidase, in digestion 664	Charge cloud, for electrons 90, 136–139	memorized Names 244
Carnegie Institution 617	Charles' Law The pressure of a gas is	names without prefixes 246
Carothers, W. H. 667	inversely proportional to the vol-	naming 244–245
	ume it occupies if the number of	prefixes used to name 245
Catalyst A substance that speeds a chemical reaction without being per-	gas particles and the temperature are	recognizing from formulas 244
manently altered itself. 594–597, 597	constant. 465	
automobile catalytic converter 385	Chemical bond An attraction between	recognizing from names 246 systematic names 244–246
		ionic 239–243
equilibrium and 614–615	atoms or ions in chemical com-	
green chemistry and 597	pounds. Covalent bonds and ionic	oxyacids 257
homogeneous and heterogeneous 596–597	bonds are examples. 175–179. <i>See also</i> Ionic bond; Covalent bond	summary 259–260 Chemical reaction The conversion of
in producing hydrogen gas 598	angles between 210–212	one or more pure substances into one
Catalytic converter 385, 596–597 Cathode The electrode at which reduc-	energy and 123–124 ionic bond 177–179	or more different pure substances. 300
		-
tion occurs in a voltaic cell. It is the	nonpolar covalent 176	acid-base 348–357
positive electrode. 389	polar covalent 176	chemical equations for 300–302
Cation An ion formed from an atom	predicting bond type 179–181,	collision theory for 586
that has lost one or more electrons	524–525	combination 382
and thus has become positively	summary 178	combustion 383–385
charged. 91 formation of 181, 182–183	Chemical change. See Chemical reaction Chemical compound. See Compound	completion 252
		converting to names 259–260
monatomic	Chemical Elements. See Element	decomposition 383
naming 236	Chemical engineering 585	double-displacement 312
roles in body 185 names 240	Chemical equation 300–307	endothermic 322–323
	for acid-base reactions 351–355	energy and 321–323
produced by ionizing radiation 706	balancing 302–307	equilibrium constants for 602–607
Cellulary (50, (52, (53,	polyatomic ions 303, 306	exothermic 321–322
Cellulose 650, 652–653 molecular structure of 653	Study Sheet 303	general process, collision theory
	chemical calculations and 413	586–592, 634–640, 650–656,
Celsius scale 18–19	complete 316	664–670, 666–672, 692–698
Celsius to Fahrenheit conversion	complete ionic 315	neutralization 348–355
58–60	heat and 302	oxidation-reduction 372–375
Celsius to Kelvin conversion 58–60	interpreting 300–302	precipitation 312–318. See
Cesium (Cs), electron configuration of	molecular 316	also Precipitation reaction
152	net ionic 316	predicting extent of 602–605
Cesium-137 706	physical states and 301	rate 592–596
Cesium chloride, crystal structure of	special conditions and 301–302	concentration effect 593–594
186–187	Chemical equilibrium. See Equilibrium	temperature effect 592–593
Chain-growth (or addition) poly-	Chemical formula A concise written	reversible 251, 597–598
mers A polymer that contains all of	description of the components of a	reversible reaction and equilibrium

chemical compound. It identifies the

597-601

the atoms of the original reactant in

172-175, 256-259, 300-303, 321-

327, 346–351, 356–359, 372–375,

single-displacement 386	377–380, 382–385, 388–391	Completion reaction 252
synthesis 382	mixture 173	Compound A substance that contains
types of 382–388	pure substance 173	two or more elements, the atoms of
Chemistry The structure and behavior	Study Sheet 174, 476, 483, 488,	these elements always combining in
of matter. 4. See also Organic chem-	526	the same whole-number ratio. 172
istry; Biochemistry	Classifying compounds 180	binary covalent 244
combinatorial 649	Clean Air Act of 1967 499	binary ionic 239
Green. See Green Chemistry	Cleaning with soap and detergent	classification 180
nuclear 691–701	562–563	element versus 172
organic 633–648	Clinton, Bill 5	ionic 180
suggestions for studying 5	Coal, acid rain and 255	molar masses of 261–265, 267–271
Chemists 4	Cobalt-60	molecular 180
Children	cancer radiation treatment and 707	as pure substance 172–175
effects of ionizing radiation on 706	food irradiation and 711	Computer-based tools that accompany
fingerprints of 517	gamma ray emission and 698	this text 7
Chili peppers 559	Coefficients The numbers in front	Concentration The number of particles
Chloral hydrate 206	of chemical formulas in a balanced	per unit volume. For gases, it is usu-
Chloride ion 91	chemical equation. 301	ally described in terms of moles of gas
in sodium chloride 172	Coffee	particles per liter of container. Sub-
solubility of compounds with 317	pH of 347	stances in solution are described with
Chlorine (Cl)	removing caffeine 491	molarity (moles of solute per liter of
as anion 177–178	Cold-start emissions, catalytic converters	solution). 593
bleach and 356	and 385	disruption of equilibrium and 610
catalyst for ozone destruction	Cold packs 322	equilibrium constants and 602–605
594–596	Collision theory A model for the	rate of reaction and 593–594
diatomic molecules of 97	process of chemical change. 586–	Condensation The change from vapor
electrolysis and 391	592, 634–640, 650–656, 664–672,	to liquid. 510
ion formation 182	692–698	dynamic equilibrium between
in ionic bonds 177	orientation 591	evaporation and 513–515
product of the electrolysis of salt 81	steps 586–588	rate of 513
reaction with alkali metals 84	summary 591–592	Condensation (or step-growth) poly-
structure 97	Combination (or synthesis) reaction	mer A polymer formed in a reaction
threshold limit value, or TLV, and	The joining of two or more elements	that releases small molecules, such as
498	or compounds into one product. 382	water. This category includes nylon
use and production 501, 580	Combinatorial chemistry 649	and polyester. 667
valence electrons 198	Combined gas law equation 476	Condensation reaction A chemical
Chlorine-36 710	Combustion analysis, empirical and	reaction in which two substances
Chlorobutane, formation of 428	molecular formulas from 278	combine to form a larger molecule
1-Chloropropane, melting point of 59	Combustion reaction Rapid oxida-	with the release of a small molecule,
Chocolate, taste of 345	tion accompanied by heat and usually	such as water. 656
Cholesterol, structure of 661–662	light. 383-384	Condensed formula 635
Chromite 430	incomplete 385	Confirmation, in scientific method 9
Chromium (Cr), sources of 297	Study Sheet 384	Conjugate acid The molecule or ion
Chromium(III) oxide 243	Complete (or molecular) equation A	that forms when one H ⁺ ion is added
as catalyst 598	chemical equation that includes	to a molecule or ion. 357
catalytic converter and 385	uncharged formulas for all of the	Conjugate acid-base pair Two mol-
empirical formula of 271	reactants and products. The formulas	ecules or ions that differ by one H ⁺
production and use 447, 454	include the spectator ions, if any. 316	ion. 357–358
Chyme 664	Complete combustion 383–384	Conjugate base The molecule or ion
Chymotrypsin, in digestion 664	Complete electron configuration	that forms when one H ⁺ ion is re-
Citric acid 248	148–150	moved from a molecule or ion. 358
taste of 345	Complete ionic equation A chemi-	Conservation of Energy, Law of 122
Citrine 294	cal equation that describes the actual	Control rods Rods containing sub-
Clark, Desmond 709	form for each substance in solution.	stances such as cadmium or boron
Classification of Matter 120–123,	For example, ionic compounds that	(which are efficient neutron absorb-

are dissolved in water are described as

separate ions. 315

ers), used to regulate the rate of

nuclear fission in a power plant and

electron covalent bonds. 192

Dry cell battery, chemistry of 390-391

Drug design 649

to stop the fission process if necessary.	Dead Sea Scrolls 710	359
716	Decaffeination 491	Dimensional analysis. See Unit analysis
Conversion factor A ratio that de-	Decimal place	Dimethyl ether, Lewis structure for 206
scribes the relationship between two	calculators and 40	Dipole A molecule that contains an
units. 34–36	measurements and 39	asymmetrical distribution of positive
atomic mass as 104	rounding for addition and subtrac-	and negative charges.
density as 49	tion and 45	bond 525
English-metric 38	Decomposition reaction The conver-	induced 532-533
in equation stoichiometry 418	sion of one compound into two or	instantaneous 532-533
formula mass as 265	more simpler substances. 383	Dipole-dipole attraction The intermo-
from percentage 52	Denature To change the tertiary struc-	lecular attraction between the partial
metric-metric 35	ture of a protein, causing it to lose its	negative end of one polar molecule
molecular mass as 262	natural function. 665	and the partial positive end of another
percentage 52	Density, mass Mass divided by volume.	polar molecule. 523
Cooling, in evaporation 512–513	47–51	hydrogen bonds and 530
Copper(II) ion, voltaic cells and 388-	calculating for gases 474	London forces and 532
390	of common substances 48	Diprotic acid An acid that can donate
Copper(II) oxide, in catalytic converter	definition 47	two hydrogen ions per molecule in a
385	determination of 50-51	reaction. 250
Copper sulfate, reaction with zinc	substance identification and 48	Dirac, Paul Adrien 155
386–387	temperature and 47	Direct-contact method 491
Corliss, Jack 617	units of 48	Disaccharide Sugar molecule composed
Corundum 290	Designing Safer Chemicals Award 5	of two monosaccharide units. 652
Counting by weighing 100–102	Detergent 563	digestion products 664
Covalent bond A link between atoms	cleaning with 562–563	Dispersion forces. See London forces
that results from their sharing two	pH and 347	Disproof, in scientific method 9
electrons. 96	Deuterium 92–93	Disruption of equilibrium 610–616
common bonding patterns 195	in heavy water 59	catalysts and 614-615
formation of 176	DEZ treatment 355	concentrations and 610-613
polar or nonpolar 524	Diamond 89	Le Chatelier's Principle 614–616
Covalent bonding patterns 195–196	atoms in 90, 103	Distance, between particles of gases 460
Creatine 663	London forces in 534–535	Distillation, of salt water 81
Critical temperature 490	Diatomic Composed of paired atoms.	Disulfide bond A covalent bond
Cronenberg, David 7	The diatomic elements are H_2 , N_2 ,	between two sulfur atoms on cysteine
Crude oil 532–533	O_2 , F_2 , Cl_2 , Br_2 , and I_2 . 97	amino acids in a protein structure.
Crystals Solid particles whose compo-	Dichlorine monoxide, production and	658
nent atoms, ions, or molecules are	use 411	Division, rounding off for 40
arranged in an organized, repeating	Dichloromethane, in decaffeinating cof-	DNA (deoxyribonucleic acid)
pattern. 314	fee 491	aging and 376
Cubic centimeter 15	Dietary calorie, Cal Equivalent to 4.184	hydrogen bonding in 530
Cubic meter 12	kJ 127	Dolomite rock, hard water and 320
Cyanide ion, determing Lewis structure	Dietary Supplement and Health Act of	Dopamine, Parkinson's disease and 8
203–204	1994 663	Double-displacement reaction A
Cycle, in electromagnetic radiation 130	Diethyl ether, structure of 641	chemical reaction that has the form:
Cyclopropane 689	Diethyl zinc (DEZ), in book preserva-	AB + CD to AD + CB 312
Cysteine (Cys, C)	tion 355	acid-base 352
disulfide bonds between 658	Difference in electronegativity, in	precipitation 312–315
structure of 655	predicting bond type and polarity	Double-exchange reaction. See Double-
D	524–525	displacement reaction
	Digestion The process of converting	Double-replacement reaction. See Dou-
d block, on periodic table 146–147	large molecules into small molecules	ble-displacement reaction
Dacron, as polyester 669	that can move into the blood stream	Double bond A link between atoms
Dalton's Law of Partial Pressures The	to be carried throughout the body.	that results from the sharing of four
total pressure of a mixture of gases is	664–666	electrons. It can be viewed as two 2-

Digestive enzymes 664–666

Dihydrogen phosphate, as amphoteric

Digital readouts 23

equal to the sum of the partial pres-

597-601

sures of each gas. 485-489, 523-527,

Electron-dot symbol A representa-

tion of an atom that consists of its

Dry ice 552 naturally occurring isotopes 93 elemental symbol surrounded by dots representing its valence electrons. 189 **Dynamic equilibrium** A system that nonmetals 85 nuclear stability of 694-695 has two equal and opposing rates of **Electron capture** In radioactive nuclides that have too few neutrons, the in ordinary substances 171 change, from state A to state B and combination of an electron with a origin of 718 from state B to state A. There are proton to form a neutron, which stays oxidation numbers of 377-382 constant changes between state A in the nucleus. 697 particle interactions 534 and state B but no net change in the amount of components in either state. nuclear equations for 699-701 periodic table of 84-88 Electron cloud 90, 136 as pure substances 173 See Equilibrium **Electron configuration** A description solids, liquids, and gases 87 \mathbf{E} of the complete distribution of an structure of 88-99 element's electrons in atomic orbitals. symbols for 83 E.I. Du Pont de Nemours and Company 142, 144-145 table of percent abundances in abbreviated 151-154 Earth's crust, waters, and atmo-Earth, elemental composition of 719 Study Sheet 149, 198 sphere 719 Electric cars, zinc-air batteries in 393 Electronegativity A measure of the Element 111, creation of 94 Electric current, base unit of 11 electron attracting ability of an atom Element 114, creation of 94 Electric field, in electromagnetic radiain a chemical bond. 524-527 Emerald 294 tion 130 Study Sheet 526 **Empirical formula** A chemical formula Electric power plant, using nuclear fis-Electron group geometry A descripthat includes positive integers that desion 714-717 tion of the arrangement of all the scribe the simplest ratio of the atoms Electrode A electrical conductor placed electron groups around a central atom of each element in a compound. 271 in the half-cells of a voltaic cell. 389 in a molecule or polyatomic ion, calculating 271-275 **Electrolysis** The process by which a including the lone pairs. 212 converting to molecular formula redox reaction is pushed in the non-Electron sharing, in chemical bonds 176 275-278 spontaneous direction or the process Electron spin 142, 144 Shudy Sheet 273 of applying an external voltage to a Electron transfer, in chemical bond Enamel 354 voltaic cell, causing electrons to move formation 177-178 Endergonic changes Changes that from what would normally be the Electron volt (eV) An energy unit absorb energy 123 cell's cathode toward its anode. 391 equivalent to 1.6×10^{-19} joules. It is energy diagram 590-591 **Electrolyte** The portion of a voltaic cell often used to describe the energy as-Endothermic change A change that that allows ions to flow. 390 leads a system to absorb heat energy sociated with nuclear changes. 713 **Electron** A negatively charged particle Electroplating 391 from the surroundings. 323 found outside the nucleus of an atom. **Energy** The capacity to do work. Electrostatic force (or electromagnetic 90, 132-136 force) The force between electrically activation 588-590 in atoms 90-92 chemical bonds and 123-124 charged particles. 694 in batteries 388 **Element** A substance that cannot be chemical changes and 321-323 as beta decay 696-697 chemically converted into simpler endergonic (or endogonic) changes in chemical bonds 176, 187-193 substances; a substance in which all 123 constructing Lewis structures and of the atoms have the same number of events 128 of protons and therefore the same exergonic (or exogonic) changes electronegativity and 524 chemical characteristics. 80-99 124 in ions 90-92 atomic mass of 104 exothermic 322 in isotopes 92–93 compound versus 172-173 in food 128 like guitar strings 132–134 diatomic 97 heat 128-129 in metallic elements 98 electron configurations and orbital nuclear 713-718 in multi-electron atoms 142 diagrams 149, 198 of photons 130-132 octets of 189 electronegativities of 524 potential 122-123 in oxidation-reduction reactions isotopes of 92-93 radiant 130-132 372-375 list of common 83 storage in the body 650 particle interpretation of the wave units of 127 magic numbers for 713 character 136 making new elements 94 water formation and 127 as standing wave 134 metallic 98-99 Energy diagram 590-591 valence 188 metalloids or semimetals 86 Energy level. See Principal energy level waveform of 134 metals 85 Engineering, chemical 585

molar masses of 104-105

names of 82, 83-84

English-metric unit conversion factors

38, 415

tial pressure of vapor above a liquid in Evitoromentally Benigo Chemistry. See Green Chemistry Environmental Protection Agency 5, 704 Enzyme A naturally occurring catalyst. 594, 664–666 metallic cations in 185 why specific 666 metallic cations in 185 why specific 666 Epicterus 34 Epinephrine 558 Equation. See Chemical equation, Nuclear equation, Infogerprints 517 olestra as 660–661 Equation stoichiometry Calculations that make use of the quantitative relationships between the substances in a chemical reaction to convert the amount of one substance in the chemical reaction to to more the amount of of different substance in the chemical reaction to convert the amount of one substance in the chemical reaction to the amount of 142-12 is deal gases and 478–485 molarity and 434–438 Study sheet 437 Equilibrium 597–598 Equilibrium 597–598 Equilibrium 597–599 Edistruption of 610–616 dynamic 514–516 effect or changing concentrations (610–613) gass solutions and 570–571 heterogeneous 600–607 bromogeneous 600 Le Chatelier's Principle and 614–616 Equilibrium contant A value that describes the extent to which reversible reactions proceed toward products be fore reaching equilibrium. 602–605 calculating values for 603–604 extent of reactions and 698–609 with heterogeneous equilibrium and 608–609 suith heterogeneous equilibrium 602–603 calculati	English system, metric system versus 14,	Equilibrium vapor pressure The par-	385
Environmentally Benign Chemistry Environmental Protection Agency 5, 704 Environmental Protection Agency 6, 704	37	tial pressure of vapor above a liquid in	Exothermic change A change that leads
ton and the rate of condensation. Flavironmental Protection Agency 5. 704 Frayme A naturally occurring catalyst. 594, 664-666 digestive 664-666 metallic cations in 185 mother price over the substance in the chemical reaction to convert the amount of one substance in the chemical reaction to convert the amount of one substance in the chemical reaction to convert the amount of one substance in the chemical reaction to convert the amount of one substance in the chemical reaction to convert the amount of one substance in the reaction 417-421 ideal gases and 478-485 molarity and 434-438 Study Sheet 437 Equilibrium 597-598 distruption of 610-616 dynamic 514-516 effect of catalys 614-615 effect on changing concentrations 610-613 gas solutions and 570-571 heterogeneous 606-607 homogeneous 606 Le Chatelier's Principle and 614-616 effect or catalys 614-615 effect on changing concentrations 610-613 gas solutions and 568-569 stail open analogy for 601 Equilibrium constant A value that describes the extent to which reversible reactions proceed toward products be fore reaching equilibrium. 602-605 calculating values for 603-604 writing expressions for 602-605 with heterogeneous equilibria 606-608 table of 609 writing expressions for 602-608 trapilibrium constant a type classing an oxygen and 608-609 writing expressions for 602-605 equilibrium constant a type classing an oxygen and for the concentrations of products to the concentrations of products to the concentrations of reactants for a reversible reactions and 606-608 table of 604 expression showing the rate of the concentrations of products to the concentrations of pr	Environment, chemistry and 4		to heat energy being released from the
Enzyme A naturally occurring catalyst. 594, 664–666 metallic cations in 185 why specific 666 Epicterus 34 Epitephrine 558 Equation. See Chemical equation, Nuclear equation; Ideal gas equation Equation stoichiometry Calculations that make use of the quantitative relationships between the substances in a chemical reaction to convert the amount of one substance in the chemical reaction to the amount of a different substance in the reaction 417–421 ideal gases and 478–485 modairiy and 434–438 Satudy Sheet 437 Equilibrium 597–598 disruption of 610–616 dynamic 514–516 effect of catalyst 614–615 effect of catalyst 614–615 effect or changing concentrations 610–631 gas solutions and 597–699 sumrated solution and 568–569 shive here extent to which reversible reactions proceed toward products be- fore reaching equilibrium, 602–605 calculating values for 603–604 Equilibrium constant A value that des- scribes the extent to which reversible reactions proceed toward products be- fore reaching equilibrium, 602–605 calculating values for 603–604 with heterogeneous equilibria 606–608 table of 604 writh perspensions for 602–605 equilibrium constant A value that de- scribes the extent to which reversible reactions proceed toward products be- fore reaching equilibrium, 602–605 calculating values for 603–604 writing expressions for 602–605 etable of 604 expression showing the ratio of the concentrations of products to the con- centrations of reactants for a reversible Equilibrium constant expression An expression showing the ratio of the concentrations of products to the con- centrations of reactants for a reversible Equilibrium constant expression An expression showing the ratio of the concentrations of products to the con- centrations of reactants for a reversible Exprementation in bydocators of 504 Exter A compound with two hydrocat- between 595 class as 660–661 Extraction proving liquid 214 Lewis structure 196 with proving proving proving the ratio of the concentrations of products be fore Exprementation in system of system			
Earyme A naturally occurring catalyst. 594, 664–666 digestive 664–666 metallic cations in 185 metallic cations in 185 Epinephrine 558 Equation. See Chemical equation. Nuclear equation; Ideal gas equation Equation stoichiometry Calculations that make use of the quantitrive relationships between the substances in a chemical reaction to convert the amount of one substance in the chemical reaction to orwer the amount of a different substance in the reaction and formation of 417–421 ideal gases and 478–485 molarity and 434–438 Study Sheet 437 Equilibrium 597–598 disruption of 610–616 dynamic 514–516 effect of catalyst 614–615 effect of canalyst 614–615 effect of canalyst 616–607 homogeneous 606–607 between the reactions and 597–609 saturated solution and 568–569 ski shop analogy for 601 Equilibrium constant A value that describes the extent to which reversible reactions and 605–608 talbel of 604 extent of reaction and 605 with heterogeneous equilibria 606–608 table of 608 table of 604 extent of reaction and 605 with heterogeneous equilibria 606–608 table of 608 table of 604 extent of products be fore reaction groups surrounding an oxygen and fore-fill developed to the concentrations of products be fore reaction groups surrounding an oxygen and fore-fill developed to the concentrations of products be fore reaction groups surrounding an oxygen and fore-fill developed for a solubility in water 552–553 production of 604 solubility in water 559 Ethylene (or ethere) 192 polyctylylene fyzora 639 in polyster formation and 669 Extirated the concentrations of foreaction and 605 with heterogeneous equilibria 606–608 table of 604 extent of reaction and 605 with heterogeneous equilibria 606–608 table of 604 extent of products to the concentrations of products t	· · · · · · · · · · · · · · · · · · ·		•
External Anaturally occurring catalyst. 594, 664-666 digestive 664-666 metallic cations in 185 why specific 666 price trains in 185 why specific 666 in fingerprints 517 olestra as 660-661 price trains 548 Equation. See Chemical equations. An advantage of the quantitative relationships between the substances in a chemical reaction to convert the amount of one substance in the chemical reaction to convert the amount of one substance in the chemical reaction to the amount of a different substance in the reaction and 478-485 molarity and 434-438 molarity and 434-43 molarity and			Experimentation, in scientific method
594, 664-666 metallic cations in 185 why specific 666 Epicreus 34 Epinephrine 558 Equation. See Chemical equation, Nuclear equations, local gas equation. See Chemical equation, Nuclear equations, local gas equation and the emental reaction to convert the amount of one substance in the chemical reaction to convert the amount of a different substance in the remaindairy and 434-438 molarity and 434-438 study Sheet 437 Equilibrium 597-598 disruption of 610-616 dynamic 514-516 effect of catalyst 614-615 effect or changing concentrations 610-613 gas solutions and 570-571 heterogeneous 606-607 lomogeneous 606 Equilibrium constant A value that describes the extent to which reversible reactions and 597-609 saturated solution and 568-569 ski shop analogy for 601 Equilibrium constant A value that describes the extent to which reversible reactions and 605 with heterogeneous equilibria 606-608 table of 604 extent of reaction for 602-603 stable of 606 Equilibrium constant A value that describes the extent to which reversible reactions and 605 with heterogeneous equilibria 606-608 table of 608 table of 608 Equilibrium constant A rate at the extent to which reversible reactions for 602-603 table of 608 table of 608 Equilibrium constant A rate at the extent to which reversible reactions for 602-603 table of 608 table of 609 with heterogeneous equilibria 606-608 table of 606 Equilibrium constant expression A nexpression showing the ratio of the concentrations of products to the concentrations of	• • •		8–9
metallic cations in 185 why specific 666 Epicretus 34 Epinephrine 558 Equation. See Chemical equation, Nuclear equation, telael gas equation Equation stoichiometry Calculations that make use of the quantitrative relationships between the substances in a chemical reaction to convert the amount of a different substance in the chemical reaction to the amount of a different substance in the chemical reaction to the amount of a different substance in the chemical reaction to the amount of a different substance in the reaction 417–421 ideal gases and 478–485 molarity and 434–438 Study Sheer 437 Equilibrium 597–598 disruption of 610–616 dynamic 514–516 effect on changing concentrations 610–613 gas solutions and 570–571 heterogeneous 600 Le Charclier's Principle and 614–616 reversible reactions and 597–609 saturated solution and 568–569 ski shop analogy for 601 Equilibrium constant A value that describes the extent to which reversible reactions proceed toward products before reaching equilibrium, 602–604 extent of reacting to gain and solution and 668 excibes the extent to which reversible reactions proceed toward products before reaching equilibrium, 602–605 with heterogeneous equilibria 606–608 table of 604 Equilibrium constant at value that describes the extent to which reversible reactions for 602–603 with heterogeneous equilibria 606–608 table of 606–608 table of 606 Equilibrium constant at value that describes the extent to which reversible reactions for 602–603 with heterogeneous equilibria 606–608 table of 606–608 table of 606 Equilibrium constant at values for 605–609 with precent of feacts of the concentrations of products to the concentratio			External kinetic energy 128
metallic cations in 185 why specific 666 Fijecretus 34 Epinephrine 558 Equation. See Chemical equation, Nuclear equation; Ideal gas equation Equation stoichiometry Calculations, that make use of the quantitariev relationships between the substances in a chemical reaction to convert the amount of one substance in the chemical reaction to the amount of a different substance in the chemical reaction to the amount of a different substance in the chemical reaction to the amount of a different substance in the chemical reaction to the amount of a different substance in the reaction 417–421 ideal gases and 478–485 molarity and 434–438 Equilibrium 975–598 disruption of 610–616 dynamic 514–516 effect on changing concentrations 610–613 gas solutions and 570–571 heterogeneous 606–607 homogeneous 606 Le Chatelier's Principle and 614–616 reversible reactions and 597–609 ski shop analogy for 601 Equilibrium constant A value that describes the extent to which reversible reactions proceed toward products before reaching equilibrium. 602–605 calculation; and 560–604 extent of reaction for 603–604 extent of reaction and 668–609 with heterogeneous equilibria 606–608 table of 604 temperature and 608–609 with petrogeneous equilibria 606–608 Equilibrium constant at vapues for 603–604 extent of reaction sproceed toward products before reaching equilibrium. 602–605 for reaching equilibrium constant at vapues in a given column on the periodic table; also called group. 85 Fat 659 Fat 65			17
why specific 666 Epicterus 34 Epicterus 34 Epicterus 34 Equation. See Chemical equation, Nuclear equation; Ideal gas equation Equation stoichiometry Calculations that make use of the quantitative relationships between the substances in a chemical reaction to convert the amount of one substance in the chemical reaction to the amount of a different substance in the reaction 417–421 ideal gases and 478–485 molarity and 434–438 Study Sheet 437 Equilibrium 597–598 disruption of 610–616 dynamic 514–516 effect on changing concentrations 610–613 gas solutions and 570–571 heterogeneous 606–607 homogeneous 600 Le Charelier's Principle and 614– 616 reversible reactions and 597–609 saturated solution and 568–569 ski shop analogy for 601 Equilibrium constant A value that describes the extent to which reversible reactions proceed toward products be- fore reaching equilibria, 602–605 exirch secreptions equilibria, 606–608 table of 604 Equilibrium constant at Value that describes the extent to which reversible reactions proceed toward products be- fore reaching equilibria, 606–608 table of 604 Equilibrium constant at value that describes the extent to which reversible reactions proceed toward products be- fore reaching equilibria, 606–608 table of 604 Equilibrium constant at value that describes the extent to which reversible reactions proceed toward products be- fore reaching equilibria, 606–608 table of 604 Equilibrium constant at value that describes the extent to which reversible reactions proceed toward products be- fore reaching equilibria, 606–608 table of 604 Equilibrium constant at value that describes the extent to which reversible reactions for 602–603 with heterogeneous equilibria, 606–608 table of 604 Equilibrium constant at value that describes the extent to which are versible reactions of products to the con- contractions of products to the con- centrations of reducts to the con-	2		r
Figireteus 34 Epinephrine 558 Equation. See Chemical equation, Nuclear equation: Ideal gas equation Equation stoichiometry Calculations that make use of the quantitative relationships between the substances in a chemical reaction to convert the amount of one substance in the chemical reaction to convert the amount of one substance in the chemical reaction to the amount of a different substance in the reaction 417–421 ideal gases and 478–485 molarity and 434–438 molarity and 434–438 molarity and 434–438 disruption of 610–616 dynamic 514–516 effect of catalyst 614–615 effect on changing concentrations 610–613 gas solutions and 570–571 heterogeneous 606–607 homogeneous 606 Le Chatelier's Principle and 614–616 reversible reactions and 597–609 saturated solution and 568–569 ski shop analogy for 601 Equilibrium constant A value that describes the extent to which reversible reactions proceed toward products before reaching equilibrium. 602–605 calculating values for 603–604 extent of reaction for 603–604 extent of reactions for 602–603 with heterogeneous coulibria 606–608 table of 604 temperature and 608–609 writing expressions for 602–603 table of 604 temperature and 608–609 writing expressions for 602–603 Equilibrium constant expression An expression showing the ratio of the concentrations of products to the concentrations of products to the concentrations of reactants for a reversible Exercises, in this book 6 Exercises, in this book 6 Exercises, in this book 6 Exercises the 49 Fahrenheit to Celsius conversion 58–59 Family All the elements in a given column on the periodic table; also called group. 85 Fat 659 Family All the elements in a given column on the periodic table; also called group. 85 Fat 659 Family All the elements in a given column on the periodic table; also called group. 85 Fat 659 Fishanoic acid 640 Fettilizer ammonia and 597 nitric acid and 472 Feymman, Richard 136 Fisherheit vo Celsius, colled group. 85 Fat 659 Fishinoic acid 640 Fettilizer ammonia and 597 nitric acid and 472 Feymman, Rothard 136			fblock, of elements 147
Equation. See Chemical equation, Muclear equation; Ideal gas equation Equation stoichiometry Calculations that make use of the quantitative relationships between the substances in a chemical reaction to convert the amount of one substance in the chemical reaction to convert the amount of one substances in a chemical reaction to describe the chemical reaction to the mount of a different substance in the reaction of a different substance in the reaction at 174–211 ideal gases and 478–485 molarity and 434–438 Study Sheet 437 Equilibrium 597–598 disruption of 610–616 dynamic 514–516 effect of catalyst 614–615 gas solutions and 570–571 heterogeneous 606–607 homogeneous 600 Le Chatelier's Principle and 614–616 reversible reactions proceed toward products before reaching equilibrium, 602–605 saturated solution and 588–569 ski shop analogy for 601 Equilibrium constant A value that describes the extent to which reversible reactions proceed toward products before reaching equilibrium, 606–604 extent of reaction and 605 twith heterogeneous equilibria 606–604 temperature and 608–609 writing expressions for 602–603 Equilibrium constant expression An expression showing the ratio of the concentrations of products to the concentrations of reactants for a reversible energy diagram 590 Equalibrium constant expression An expression showing the ratio of the concentrations of reactants for a reversible energy diagram 590 Equalibrium constant expression An expression showing the ratio of the concentrations of reactants for a reversible energy diagram 590 Equallibrium constant expression An e	* 1		
Equation. See Chemical equation, Nuclear equation; Ideal gas equation Equation stoichiometry Calculations that make use of the quantitative relationships between the substances in the chemical reaction to convert the amount of one substance in the chemical reaction to onvert the amount of a different substance in the reaction 417–421 ideal gases and 478–485 molarity and 434–438 Study Sheet 437 Equilibrium 597–598 disruption of 610–616 dynamic 514–516 effect on changing concentrations 610–615 effect on changing concentrations 610–615 effect on changing concentrations 610–616 dynamic 514–516 effect on changing concentrations 610–615 effect on changing concentrations 610–615 effect on changing concentrations 610–616 dynamic 510–571 heterogeneous 600 Event of the concentrations of reaction and 568–569 saturated solution and 568–5			
Equation stoichiometry Calculations that make use of the quantitative relationships between the substances in a convert the amount of one substance in the chemical reaction to convert the amount of one substance in the chemical reaction to the amount of a different substance in the reaction 417–421 ideal gases and 478–485 molarity and 434–438 Study Sheet 437 Equilibrium 597–598 disruption of 610–616 dynamic 514–516 effect on changing concentrations 610–613 gas solutions and 570–571 heterogeneous 606–607 homogeneous 600 p. Le Charelier's Principle and 614–616 reversible reactions and 568–569 satirated solution and 568–569 satirated solution and 568–569 satirated solution and 568–569 calculating values for 603–604 extent of reaction and 605 with heterogeneous equilibrium 606–608 table of 604 extent of reaction and 605 with heterogeneous equilibria 606–608 table of 604 temperature and 608–609 writing expressions for 602–603 Equilibrium constant t A value that describes the extent to which reversible reactions proceed toward products before reaching equilibrium 606–608 atable of 604 temperature and 608–609 writing expressions for 602–603 Equilibrium constant to repression An expression showing the ratio of the concentrations of reactants for a reversible expression showing the ratio of the concentrations of reactants for a reversible expression showing the ratio of the concentrations of reactants for a reversible expression of featcants for a reversible expression showing the ratio of the concentrations of reactants for a reversible expression showing the ratio of the concentrations of reactants for a reversible expression and contract the expression and conversion of a liquid to a gas. 79, 511–512 flame feature of the products to the concentrations of products to the concentrations of reactants for a reversible reaction on for the concentrations of reactants for a reversible reaction on feature from the periodic table of 64 fertily as intoxicating liquid 214 Lewis structure 196 mixing with water 552–553 production			
Equation stoichiometry Calculations that make use of the quantitative relationships between the substances in a chemical reaction to convert the amount of one substance in the chemical reaction to the amount of a different substance in the reaction 417–421 (aleal gases and 478–485 molarity and 434–438 study Sheet 437 (alightimus 597–598 (alightimus 597–598 (alightimus 597–598 (alightimus 597–598 (alightimus 597–598 (alightimus 597–598 (alightimus 610–613 gas solutions and 570–571 heterogeneous 606–607 homogeneous 600 Le Chatelier's Principle and 614–616 reversible reactions and 597–609 saturated solution and 568–569 ski shop analogy for 601 Equilibrium constant A value that describes the extent to which reversible reactions proceed toward products before reaching equilibrium. 602–605 calculating values for 603–604 extent of reaction and 605 with heterogeneous equilibria 606–608 table of 604 temperature and 608–609 with heterogeneous equilibria 606–608 table of 604 temperature and 608–609 with heterogeneous equilibria 606–609 string expressions for 602–603 Equilibrium constant expression An expression showing the ratio of the concentrations of reactants for a reversible reactions of products to the concentrations of reactants for a reversible econcentrations of reactants for a reversible ec	= = = = = = = = = = = = = = = = = = = =		Family All the elements in a given col-
that make use of the quantitative relationships between the substances in a chemical reaction to convert the amount of one substance in the chemical reaction to the amount of a different substance in the reaction 417–421 ideal gases and 478–485 molarity and 434–438 study sheet 437 substitution of 610–616 dynamic 514–516 effect of catalyst 614–615 effect of changing concentrations 610–613 gas solutions and 570–571 heterogeneous 606–607 homogeneous 600 Le Chatelier's Principle and 614–616 reversible reactions and 597–609 saturated solution and 568–569 ski shop analogy for 601 Equilibrium constant A value that describes the extent to which reversible reactions proceed toward products before reaching equilibrium. 602–605 calculating values for 603–605 with hererogeneous equilibria 606–608 with hererogeneous equilibria 606–609 writing expressions for 604 expent of reactions and 605 with hererogeneous equilibria 606–609 writing expressions for 602–603 Equilibrium constant texpression An expression showing the ratio of the concentrations of reactants for a reversible reactions of products to the concentrations of reactants for a reversible reactions products of the concentrations of reactants for a reversible reactions products of the concentrations of reactants for a reversible reactions products before the concentrations of reactants for a reversible reactions products before the concentrations of reactants for a reversible reactions products of the concentrations of reactants for a reversible reactions products of the concentrations of reactants for a reversible reactions products of the concentrations of reactants for a reversible reactions products of the concentrations of reactants for a reversible reactions products of the concentrations of reactants for a reversible reactions products of the concentrations of reactants for a reversible reaction and formal products between the advanced to the concentration of the concentrations of reactants for a reversible reaction products between the lowest products of the c			
that make the with the quantiture relationships between the substances in a chemical reaction to convert the amount of a different substance in the chemical reaction to the amount of a different substance in the reaction 417–421	-	· · · · · · · · · · · · · · · · · · ·	
relations and reaction to convert the amount of one substance in the chemical reaction to the amount of a different substance in the reaction 417–421 ideal gases and 478–485 molarity and 434–438 Study Sheet 437 Equilibrium 597–598 disruption of 610–616 dynamic 514–516 effect on changing concentrations 610–613 gas solutions and 570–571 heterogeneous 606–607 homogeneous 600 Le Chatelier's Principle and 614–616 reversible reactions and 597–609 saturated solution and 568–569 ski shop analogy for 601 Equilibrium constant A value that describes the extent to which reversible reactions proceed toward products before reaching equilibrium. 602–605 calculating values for 603–604 extent of reaction and 605 with heterogeneous equilibria table of 604 temperature and 608–609 writing expression showing the ratio of the concentrations of reactants for a reversible reactions of products to the concentrations of reactants for a reversible reactions of products to the concentrations of reactants for a reversible concentrations of reactants for a reversible reactions of products to the concentrations of reactants for a reversible reactions of products to the concentrations of reactants for a reversible reactions of products to the concentrations of reactants for a reversible reactions of products to the concentrations of reactants for a reversible reactions of products to the concentrations of reactants for a reversible for rentration of reactants for a reversible reaction of reactants for a rev			
the amount of one substance in the chemical reaction to the amount of a different substance in the reaction 417–421 ideal gases and 478–485 molarity and 434–438 Strudy Sheet 437 Equilibrium 597–598 disruption of 610–616 dynamic 514–516 effect of catalyst 614–615 effect of catalyst 614–615 gas solutions and 570–571 heterogeneous 606–607 homogeneous 600 Le Chatelier's Principle and 614—616 freversible reactions and 597–609 saturated solution and 568–569 saturated solution and 568–569 saturated solution and 568–569 saturated solution and 568–569 saturated solution and 568–604 extent of reactinn to the amount of a different substance in the reaction and 605 with heterogeneous quilibria food—608 table of 604 extent of reactinn showing the ratio of the concentrations of reactants for a reversible reactions of products to the concentrations of products of the concentrations of reactants for a reversible reactions of products to the concentrations of reactants for a reversible and of the concentrations of reactants for a reversible reactions of products to the concentrations of products to the concentrations of reactants for a reversible reactions of products to the concentrations of products to the concentrations of reactants for a reversible reactions of products to the concentrations of reactants for a reversible reactions of products to the concentrations of reactants for a reversible reactions of products to the concentrations of reactants for a reversible reactions of products to the concentrations of reactants for a reversible reaction of the concentrations of reactants for a reversible reactions of products to the concentrations of reactants for a reversible reaction of the concentrations of reactants for a reversible reaction of the concentrations of reactants for a reversible reaction of the concentrations of reactants for a reversible reaction of the concentrations of reactants for a reversible reaction of the concentrations of reactants for a reversible reaction of the concentrations of reactants for a re			
the amount of chemical reaction to the amount of a different substance in the reaction 417–421		· ·	
telential reaction of the animal following and addifferent substance in the reaction 417–421 ideal gases and 478–485 molarity and 434–438 Study Sheet 437 Equilibrium 597–598 disruption of 610–616 dynamic 514–516 effect of catalyst 614–615 effect on changing concentrations 610–613 gas solutions and 570–571 heterogeneous 606–607 homogeneous 600 Le Chatelier's Principle and 614–616 erversible reactions and 597–609 saturated solution and 568–569 ski shop analogy for 601 Equilibrium constant A value that describes the extent to which reversible reaction and 605 with heterogeneous equilibria 606–608 table of 604 etemperature and 608–609 writing expression showing the ratio of the concentrations of reactants for a reversible reactions of products to the concentrations of reactants for a reversible reactions of products to the concentrations of reactants for a reversible reactions of products to the concentrations of reactants for a reversible excent on a formation of the concentrations of reactants for a reversible concentrations of reactants for a reversible concentrations of reactants for a reversible excent on a formation of the concentrations of reactants for a reversible excent on a formation and format			
a univerent student and 417–421 ideal gases and 478–485 molarity and 434–438 Study Sheet 437 Equilibrium 597–598 disruption of 610–616 dynamic 514–516 effect of catalyst 614–615 effect on changing concentrations 610–613 gas solutions and 570–571 heterogeneous 606–607 homogeneous 600 Le Chatelier's Principle and 614–616 reversible reactions and 597–609 saturated solution and 568–569 ski shop analogy for 601 Equilibrium constant A value that describes the extent to which reversible reactions proceed toward products before reaching equilibrium. 602–605 calculating values for 603–604 extent of reaction and 605 with heterogeneous equilibrium. 602–605 calculating values for 603–604 extent of reaction and 605 with heterogeneous equilibrium. 602–605 calculating values for 603–604 extent of reaction and 605 with heterogeneous equilibrium. 602–605 calculating values for 603–604 extent of reaction and 605 with heterogeneous equilibrium. 602–605 calculating values for 603–604 extent of reaction and 605 with heterogeneous equilibrium. 602–605 calculating values for 603–604 extent of reaction and 605 with heterogeneous equilibrium. 602–605 calculating values for 603–604 extent of reaction and 605 with heterogeneous equilibrium constant expression showing the ratio of the concentrations of products to the concentrations of reactants for a reversible reactions of products to the concentrations of reactants for a reversible concentrations of reactants for a reversible concentrations of reactants for a reversible excent on freatcants for a reversible concentrations of reactants for a reversible concentrations of reactants for a reversible excent to freaction on of reactants for a reversible concentrations of reactants for a reversible concentration of reactants for a reversible reaction of formation and formation and formation and formation and for		•	
ideal gases and 478–485 molarity and 434–438 Study Sheet 437 Equilibrium 597–598 disruption of 610–616 dynamic 514–516 effect of catalyst 614–615 effect on changing concentrations 610–613 gas solutions and 570–571 heterogeneous 606–607 homogeneous 600 Le Chatelier's Principle and 614–616 reversible reactions and 597–609 saturated solution and 568–569 ski shop analogy for 601 Equilibrium constant A value that describes the extent to which reversible reaction proceed toward products before reaching equilibrium. 602–605 calculating values for 63–604 extent of reaction and 605 with heterogeneous equilibria 606–608 table of 604 temperature and 608–609 writing expressions for 602–603 Equilibrium constant expression An expression showing the ratio of the concentrations of products to the concentrations of reactants for a reversible encentrations of products to the concentrations of products to the concentration of the concentrations of products to the concentration of products to the concentration of the concentration of products to the concentration of the concentration of products of the concentration for a reversible can be production of the concentration for a reversible can be producted with two hydrocarbon gought water 569 Ethyle concentration and oxygen at comment to the hot of products of the concentration for a town of the concentration for a reversible product on formation and oxygen at case there to production of the concentration for a t		, e	
molarity and 434-438 Study Sheet 437 Equilibrium 597-598 disruption of 610-616 dynamic 514-516 effect of catalyst 614-615 effect on changing concentrations 610-613 gas solutions and 570-571 heterogeneous 606-607 homogeneous 600 Le Chatelier's Principle and 614- 616 reversible reactions and 597-609 ski shop analogy for 601 Equilibrium constant A value that describes the extent to which reversible reaction and 605 calculating values for 603-604 extent of reaction and 605 with heterogeneous equilibria 606-608 table of 604 extent of reaction and 608-609 writing expressions for 602-603 equilibrium constant expression An expression showing the ratio of the concentrations of products to the concentrations of products to the concentrations of products to the concentrations of reactants for a reversible explain the solubility in water 552-553 production of 604 solubility in water 569 Ethylene solubility in water 559 Ethylene solubility in water 559 Ethylene solubility in water 559 Ethylene Ether A compound with two hydrocar- bon groups surrounding an oxygen atom. 641 Ethyl alcohol. See Ethanol Ethyl alcohol. See Ethanol Ethylene (or ethene) 192 polyethylene formation and 669 Ethylene exide, use and production 503 Ethylene oxide, use and production 503 Ethylene glycol 639 in polyester formation 668 Exact numbers, significant figures and diagram 145 how made 297 hydrogen bonds and 529 oxidation numbers and 378 production of 604 prove stable, smalle			·
Study Sheet 437 Equilibrium 597-598 disruption of 610-616 dynamic 514-516 effect of catalyst 614-615 effect on changing concentrations 610-613 gas solutions and 570-571 heterogeneous 606-607 homogeneous 606 Le Chatelier's Principle and 614- 616 reversible reactions and 597-609 saturated solution and 568-569 ski shop analogy for 601 Equilibrium constant A value that describes the extent to which reversible reactions proceed toward products before reaching equilibrium. 602-605 calculating values for 603-604 extent of reaction and 605 with heterogeneous equilibria 606-608 table of 604 extent of searcion and 605 writh heterogeneous equilibria 606-608 table of 604 extent of searcion and 605 writh eterogeneous equilibria 606-608 table of 604 extent of reaction and 605 writh gengeneous equilibria 606-608 table of 604 extent of reaction and 605 writh gengeneous equilibria 606-608 table of 604 extent of feaction and 605 writh gengeneous equilibria for 606-608 table of 604 extent of feaction and 605 writh gengeneous equilibria for 606-608 table of 604 extent of feaction and 605 writh gengeneous equilibria for 606-608 table of 604 extent of feaction and 605 exercises, in this book 6 Examples, in this book 6 Exergonic changes Changes that release energy. 124 energy diagram 590 Extented see Ethylene Ethene. See Ethylene by delich in water 569 Ethene. See Ethylene by delich in water 569 Ethene. See Ethylene on of 41 Ethyl alcohol. See Ethanol Ethyl alcohol. See Ethanol Ethyl butanoate 643 Ethylene (or ethene) 192 polyethylene formation and 669 Ethylene oxide, use and production 503 Ethylene covide, use and production 503 Ethylene oxide, use a			
Equilibrium 697–598 disruption of 610–616 dynamic 514–516 effect of catalyst 614–615 effect on changing concentrations 610–613 gas solutions and 570–571 heterogeneous 606–607 homogeneous 600 Le Chatelier's Principle and 614– 616 reversible reactions and 597–609 saturated solution and 568–569 ski shop analogy for 601 Equilibrium constant A value that describes the extent to which reversible reactions proceed toward products before reaching equilibrium. 602–605 calculating values for 603–604 extent of reaction and 605 with heterogeneous equilibria 606–608 table of 604 extent of reaction and 608–609 writing expressions for 602–603 Equilibrium constant expression An expression showing the ratio of the concentrations of products to the concentrations of products to the concentrations of reactants for a reversible effect of catalyst 614–615 Ether A compound with two hydrocarbon groups surrounding an oxygen atom. 641 Ethyl alcohol. See Ethylene Ether A compound with two hydrocarbon groups surrounding an oxygen atom. 641 Ethyl alcohol. See Ethanol Ethyl alcohol. See Ethanol Ethyl alcohol. See Ethanol Ethyl butanoate 643 Ethylene (or ethene) 192 polyethylene formation and 669 Ethylene glycol 639 in polyester formation 668 Ethylene oxide, use and production 503 Ethylene oxide, use and product			
disruption of 610-616 dynamic 514-516 effect of catalyst 614-615 effect on changing concentrations 610-613 gas solutions and 570-571 heterogeneous 606-607 homogeneous 600 Le Chatelier's Principle and 614-616 reversible reactions and 597-609 saturated solution and 568-569 ski shop analogy for 601 Equilibrium constant A value that describes the extent to which reversible reactions proceed toward products before reaching equilibrium. 602-605 calculating values for 603-604 extent of reaction and 605 with heterogeneous equilibria 606-608 table of 604 extent of praction and 608-609 writing expressions for 602-603 Equilibrium constant expression An expression showing the ratio of the concentrations of products to the concentrations of products to the concentrations of products to the concentrations of reactants for a reversible concentrations of reactants for a reversible of centration of for a reversible of products to the concentrations of freatcatants for a reversible of centration of a reversible of products to the concentrations of foreactants for a reversible of centrations of foreactants for a reversible of centration of of products to the concentrations of foreactants for a reversible of the concentrations of foreactants for a reversible on the concentration of the concentrations of products to the concentration		-	_
distiption of 514–516 dynamic 514–516 effect of catalyst 614–615 effect on changing concentrations 610–613 gas solutions and 570–571 heterogeneous 606–607 homogeneous 600 Le Chatelier's Principle and 614–616 reversible reactions and 597–609 saturated solution and 568–569 satishop analogy for 601 Equilibrium constant A value that describes the extent to which reversible reactions proceed toward products before reaching equilibrium. 602–605 calculating values for 603–604 extent of reaction and 605 with heterogeneous equilibria 606–608 table of 604 extent of praction and 608–609 writing expressions for 602–603 Equilibrium constant expression An expression showing the ratio of the concentrations of reactants for a reversible concentrations of reactants for a reversible of reactants for a reversible of the concentrations of products to the concentrations of reactants for a reversible of the concentrations of reactants for a reversible of the concentrations of products to the concentrations of reactants for a reversible of the concentration of the concentrations of products to th	=		
effect of catalyst 614–615 effect on changing concentrations 610–613 gas solutions and 570–571 heterogeneous 606–607 homogeneous 600 Le Chatelier's Principle and 614—616 reversible reactions and 597–609 ski shop analogy for 601 Equilibrium constant A value that describes the extent to which reversible reactions proceed toward products before reaching equilibrium, 602–605 calculating values for 603–604 extent of reaction and 605 with heterogeneous equilibria 606–608 with heterogeneous equilibria 606–608 with progression sfor 602–603 Equilibrium constant expression An expression showing the ratio of the concentrations of products to the concentrations of products to the concentrations of practants for a reversible reflect on changing concentrations of poducts to the concentrations of products to the concentrations of practants for a reversible reactions and 570–571 heterogeneous 606–607 bethylene for mation and 669 Ethylene (or ethene) 192 polyethylene formation and 669 Ethylene glycol 639 in polyester formation 668 Ethylene or detail progression 668 Ethylene of 639 in polyester formation 668 Ethylene oxide, use and production 503 E			
effect on changing concentrations 610–613 gas solutions and 570–571 heterogeneous 606–607 homogeneous 600 Le Chatelier's Principle and 614–616 reversible reactions and 597–609 saturated solution and 568–569 ski shop analogy for 601 Equilibrium constant A value that describes the extent to which reversible reactions proceed toward products before reaching equilibrium. 602–605 calculating values for 603–604 extent of reaction and 605 with heterogeneous equilibria 606–608 table of 604 temperature and 608–609 writing expressions for 602–603 Equilibrium constant expression An expression showing the ratio of the concentrations of products to the concentrations of reactants for a reversible atom. 641 Ethyl alcohol. See Ethanol Ethyl butanoate 643 Ethylene (or ethene) 192 Ethylene (or ethene) 192 Ethylene (or ethene) 192 Ethylene formation and 669 Ethylene formation and 669 Ethylene oxide, use and production 503 Ethylene oxide, use and productio	·		
610–613 Ethyl alcohol. See Ethanol gas solutions and 570–571 Ethyl butanoate 643 Ethylene (or ethene) 192 Le Chatelier's Principle and 614–616 reversible reactions and 597–609 saturated solution and 568–569 ski shop analogy for 601 Equilibrium constant A value that describes the extent to which reversible reactions proceed toward products before reaching equilibrium. 602–605 calculating values for 603–604 extent of reaction and 605 with heterogeneous equilibria 606–608 table of 604 temperature and 608–609 writing expressions for 602–603 Equilibrium constant expression An expression showing the ratio of the concentrations of reactants for a reversible for reactions and 570–571 Ethyl alcohol. See Ethanol Ethyl butanoate 643 Ethylene (or ethene) 192 Ethylene (or ethene) 192 Flame retardant, phosphates in 238 Flashtubes 499 Fletrov Laboratory of Nuclear Reactions 94 Fluoriae ion, tooth decay and 354 Fluoriae ion,			
gas solutions and 570–571 heterogeneous 606–607 homogeneous 600 Le Chatelier's Principle and 614– 616 reversible reactions and 597–609 saturated solution and 568–569 ski shop analogy for 601 Equilibrium constant A value that describes the extent to which reversible reactions proceed toward products before reaching equilibrium. 602–605 calculating values for 603–604 extent of reaction and 605 with heterogeneous equilibria 606–608 table of 604 temperature and 608–609 writing expressions for 602–603 Equilibrium constant expression An expression showing the ratio of the concentrations of reactants for a reversible reactants for a reversible of the concentrations of products to the concentrations of products to the concentrations of reactants for a reversible of the concentrations of products to the concentration of the concentration of products			
heterogeneous 606–607 homogeneous 600 Le Chatelier's Principle and 614–616 reversible reactions and 597–609 saturated solution and 568–569 ski shop analogy for 601 Equilibrium constant A value that describes the extent to which reversible reactions proceed toward products before reaching equilibrium. 602–605 calculating values for 603–604 extent of reaction and 605 with heterogeneous equilibria 606–608 table of 604 temperature and 608–609 writing expressions for 602–603 Equilibrium constant expression An expression showing the ratio of the concentrations of products to the concentrations of reactants for a reversible concentrations of concentrations of the concentrations of reactants for a reversible concentrations of co			
homogeneous 600 Le Chatelier's Principle and 614—616 reversible reactions and 597–609 saturated solution and 568–569 ski shop analogy for 601 Equilibrium constant A value that describes the extent to which reversible reactions proceed toward products before reaching equilibrium. 602–605 calculating values for 603–604 extent of reaction and 605 with heterogeneous equilibria 606–608 table of 604 temperature and 608–609 writing expressions for 602–603 Equilibrium constant expression An expression showing the ratio of the concentrations of reactants for a reversible Fluorapatite, tooth decay and 354 Fluorine (F) covalent bond formation 188–189 diagram 145 how made 297 hydrogen bonds and 529 oxidation numbers and 378 production of 442–443 structure of 97 valence electrons of 188 Fluorine-18 Exergonic changes Changes that release energy. 124 energy diagram 590 Exthylene glycol 639 in polyester formation 668 Ethylene oxide, use and production 503 Ethylene formation 668 Fluoriae in, tooth decay and 354 Fluoriae in, tooth decay and 354 Fluorine (F) covalent bond formation 188–189 diatomic molecules of 97 electron configuration and orbital diagram 145 how made 297 hydrogen bonds and 529 oxidation numbers and 378 production of 442–443 structure of 97 valence electrons of 188 Fluorine-18		•	
Le Chatelier's Principle and 614–616 reversible reactions and 597–609 saturated solution and 568–569 ski shop analogy for 601 Equilibrium constant A value that describes the extent to which reversible reactions proceed toward products before reaching equilibrium. 602–605 calculating values for 603–604 extent of reaction and 605 with heterogeneous equilibria 606–608 table of 604 temperature and 608–609 writing expressions for 602–603 Equilibrium constant expression An expression showing the ratio of the concentrations of reactants for a reversible Exthylene gycol 639 in polyester formation 668 Ethylene oxide, use and production 503 Ethyne. See Acetylene Evaporation The conversion of a liquid to a gas. 79, 511–512 cooling and 512 rate of. See Rate of evaporation Exact numbers, significant figures and 41 Examples, in this book 6 Excited state The condition of an atom orbitals that do not represent the lowest possible potential energy. 138 writing expressions for 602–603 Equilibrium constant expression An expression showing the ratio of the concentrations of products to the concentrations of reactants for a reversible Extiplene gycol 639 Ethylene oxide, use and production 503 Ethylene oxide, use and production fol a liquid to a gas. 79, 511–512 cooling and 512 pace of evaporation Exact numbers, significant figures and diagram 145 how made 297 hydrogen bonds and 529 valence electrons of 188 Fluorine-IB Fluorine-IB Fluorine-IB Fluorine (F)		· · · · · · · · · · · · · · · · · · ·	
in polyester formation 668 reversible reactions and 597–609 saturated solution and 568–569 ski shop analogy for 601 Equilibrium constant A value that describes the extent to which reversible reactions proceed toward products before reaching equilibrium. 602–605 calculating values for 603–604 extent of reaction and 605 with heterogeneous equilibria 606–608 table of 604 temperature and 608–609 writing expressions for 602–603 Equilibrium constant expression An expression showing the ratio of the concentrations of products to the concentrations of reactants for a reversible reactions and 597–609 Ethylene oxide, use and production 503 Eliurine (F) covalent bond formation 188–189 diatomic molecules of 97 electron configuration and orbital diagram 145 how made 297 hydrogen bonds and 529 oxidation numbers and 378 production of 442–443 structure of 97 valence electrons of 188 Fluorine-18 Pluorine-18 Fluorine-18 Pood oxide the fluorine (F) Examples, in this book 6 Exercises, in this book 6 Exercises, in this book 6 Exercis			
reversible reactions and 597–609 saturated solution and 568–569 ski shop analogy for 601 Equilibrium constant A value that describes the extent to which reversible reactions proceed toward products before reaching equilibrium. 602–605 calculating values for 603–604 extent of reaction and 605 with heterogeneous equilibria			
saturated solution and 568–569 ski shop analogy for 601 Equilibrium constant A value that describes the extent to which reversible reactions proceed toward products before reaching equilibrium. 602–605 calculating values for 603–604 extent of reaction and 605 with heterogeneous equilibria 606–608 table of 604 temperature and 608–609 writing expressions for 602–603 Equilibrium constant expression An expression showing the ratio of the concentrations of reactants for a reversible ski shop analogy for 601 Evaporation The conversion of a liquid to a gas. 79, 511–512 cooling and 512 rate of. See Rate of evaporation Exact numbers, significant figures and 41 Examples, in this book 6 Excited state The condition of an atom that has at least one of its electrons in orbitals that do not represent the lowest possible potential energy. 138 Exercises, in this book 6 Exercises the event on figuration and orbital diagram 145 how made 297 hydrogen bonds and 529 valence electrons of 188 Fluorine (F) Covalent bond formation 188–189 diatomic rovaleture, for electrons on figuration or oval atom the diagram 145 how made		± *	
Equilibrium constant A value that describes the extent to which reversible reactions proceed toward products before reaching equilibrium. 602–605 calculating values for 603–604 extent of reaction and 605 with heterogeneous equilibria 606–608 table of 604 temperature and 608–609 writing expressions for 602–603 Equilibrium constant expression An expression showing the ratio of the concentrations of reactants for a reversible scribes the extent to which reversible to a gas. 79, 511–512 cooling and 512 diatomic molecules of 97 electron configuration and orbital diagram 145 how made 297 hydrogen bonds and 529 oxidation numbers and 378 production of an atom that has at least one of its electrons in orbitals that do not represent the lowest possible potential energy. 138 exercises, in this book 6 Equilibrium constant expression An expression showing the ratio of the concentrations of products to the concentrations of reactants for a reversible extent to which reversible to a gas. 79, 511–512 covalent bond formation 188–189 diatomic molecules of 97 electron configuration and orbital diagram 145 how made 297 hydrogen bonds and 529 oxidation numbers and 378 production of 442–443 structure of 97 valence electrons of 188 Exercises, in this book 6 Fluorine-18 positron emission tomography and release energy. 124 energy diagram 590 Food Examples, in this book 6 Fluorine-18 positron emission tomography and 708 Exercises, in this book 6 Fluorine-18 positron emission tomography and 708			- · · · · · · · · · · · · · · · · · · ·
Equilibrium constant A value that describes the extent to which reversible reactions proceed toward products before reaching equilibrium. 602–605 calculating values for 603–604 extent of reaction and 605 with heterogeneous equilibria 606–608 table of 604 temperature and 608–609 writing expressions for 602–603 Equilibrium constant expression An expression showing the ratio of the concentrations of reactants for a reversible actions and scripts of a reversible to a gas. 79, 511–512 cooling and 512 rate of. See Rate of evaporation electron configuration and orbital diagram 145 how made 297 hydrogen bonds and 529 oxidation numbers and 378 production of 442–443 structure of 97 valence electrons of 188 Exercises, in this book 6 Fluorine-18 Exergonic changes Changes that release energy. 124 energy diagram 590 Exhaust 173 Equilibrium constant expression An expression of reactants for a reversible cooling and 512 diatomic molecules of 97 electron configuration and orbital diagram 145 how made 297 hydrogen bonds and 529 oxidation numbers and 378 production of 442–443 structure of 97 valence electrons of 188 Fluorine-18 Food Calories in 128			•
scribes the extent to which reversible reactions proceed toward products before reaching equilibrium. 602–605 calculating values for 603–604 extent of reaction and 605 with heterogeneous equilibria 606–608 table of 604 temperature and 608–609 writing expressions for 602–603 Equilibrium constant expression An expression showing the ratio of the concentrations of reactants for a reversible scribe of serious of serious eduing and 512 cooling and 512 electron configuration and orbital diagram 145 how made 297 hydrogen bonds and 529 oxidation numbers and 378 production of 442–443 structure of 97 valence electrons of 188 exercises, in this book 6 Fluorine-18 positron emission tomography and release energy. 124 positron emission tomography and Calories in 128		= = = = = = = = = = = = = = = = = = = =	
reactions proceed toward products be- fore reaching equilibrium. 602–605 calculating values for 603–604 extent of reaction and 605 with heterogeneous equilibria 606–608 table of 604 temperature and 608–609 writing expressions for 602–603 Equilibrium constant expression An expression showing the ratio of the concentrations of products to the concentrations of reactants for a reversible rate of. See Rate of evaporation Exact numbers, significant figures and 41			
fore reaching equilibrium. 602–605 calculating values for 603–604 extent of reaction and 605 with heterogeneous equilibria 606–608 table of 604 temperature and 608–609 writing expressions for 602–603 Equilibrium constant expression An expression showing the ratio of the concentrations of reactants for a reversible fore reaching equilibrium. 602–605 Exact numbers, significant figures and diagram 145 how made 297 hydrogen bonds and 529 oxidation numbers and 378 production of 442–443 structure of 97 valence electrons of 188 Fluorine-18 Food Calories in 128			
calculating values for 603–604 extent of reaction and 605 with heterogeneous equilibria 606–608 table of 604 temperature and 608–609 writing expressions for 602–603 Equilibrium constant expression expression showing the ratio of the concentrations of reactants for a reversible calculating values for 603–604 41 bow made 297 hydrogen bonds and 529 oxidation numbers and 378 production of 442–443 structure of 97 valence electrons of 188 Fluorine-18 positron emission tomography and 708 Food Calories in 128		<u> </u>	
extent of reaction and 605 with heterogeneous equilibria 606–608 that has at least one of its electrons in table of 604 temperature and 608–609 writing expressions for 602–603 Equilibrium constant expression expression showing the ratio of the concentrations of products to the concentrations of reactants for a reversible Examples, in this book 6 Examples, in this book 6 Examples, in this book 6 Examples, in this book 6 hydrogen bonds and 529 oxidation numbers and 378 production of 442–443 structure of 97 valence electrons of 188 Fluorine-18 positron emission tomography and 708 Food Calories in 128		-	2
with heterogeneous equilibria 606–608 that has at least one of its electrons in table of 604 temperature and 608–609 writing expressions for 602–603 Equilibrium constant expression expression showing the ratio of the concentrations of products to the concentrations of reactants for a reversible Excited state The condition of an atom that has at least one of its electrons in orbitals that do not represent the low- est possible potential energy. 138 Exercises, in this book 6 Exergonic changes Changes that release energy. 124 energy diagram 590 Exhaust 173 Oxidation numbers and 378 production of 442–443 structure of 97 valence electrons of 188 Fluorine-18 positron emission tomography and 708 Food Calories in 128			
that has at least one of its electrons in orbitals that do not represent the low-temperature and 608–609 est possible potential energy. 138 writing expressions for 602–603 Exercises, in this book 6 Exergonic changes Changes that expression showing the ratio of the concentrations of products to the concentrations of reactants for a reversible that has at least one of its electrons in orbitals that do not represent the low-structure of 97 valence electrons of 188 Fluorine-18 Exergonic changes Changes that release energy. 124 positron emission tomography and 708 Food Calories in 128			
table of 604 orbitals that do not represent the low- temperature and 608–609 est possible potential energy. 138 valence electrons of 188 writing expressions for 602–603 Exercises, in this book 6 Fluorine-18 Equilibrium constant expression An expression showing the ratio of the concentrations of products to the concentrations of reactants for a reversible release energy. 124 positron emission tomography and release energy. 124 positron emission tomography and release energy diagram 590 Food Exhaust 173 Calories in 128			
temperature and 608–609 est possible potential energy. 138 valence electrons of 188 writing expressions for 602–603 Exercises, in this book 6 Fluorine-18 Equilibrium constant expression An expression showing the ratio of the concentrations of products to the concentrations of reactants for a reversible est possible potential energy. 138 Fluorine-18 Exergonic changes Changes that positron emission tomography and release energy. 124 708 Food Calories in 128			-
writing expressions for 602–603			
Equilibrium constant expression An expression showing the ratio of the concentrations of products to the concentrations of reactants for a reversible expression showing the ratio of the concentrations of products to the concentrations of reactants for a reversible expression showing the ratio of the release energy. 124 positron emission tomography and 708 Food Exhaust 173 Calories in 128			
expression showing the ratio of the release energy. 124 708 concentrations of products to the concentrations of reactants for a reversible Exhaust 173 Food Calories in 128			
concentrations of products to the concentrations of reactants for a reversible Exhaust 173 Food Calories in 128	= = = = = = = = = = = = = = = = = = = =		
centrations of reactants for a reversible Exhaust 173 Calories in 128		- -	
	reaction at equilibrium. 602	Exhaust systems, catalytic converters and	digestion of 664–666

food, important substances in 650-661	easily change shape and volume. 76,	temperature 465
Food and Drug Administration (FDA)	79–80.	relationships between properties
491	Avogadro's Law 467	460–467
Food irradiation 711	in book preservation 355	solubility of 570–571
Force, weight as 16	breathing and 469	typical particle velocities 460
Forensic chemistry 517	calculations	universal gas constant 470
Formaldehyde 628, 641	equation stoichiometry 478	vapor as 510
determing Lewis structure 202–203	Study Sheet 483–484	volume occupied by particles 460
in herbicide formation 597	using the combined gas law	Gaseous elements 87
production and use 401, 629	equation 476–478	Gasoline 385, 637
Formic acid, molecular structure of 640	Study Sheet 476	in catalytic converters 385
Formula mass The weighted average of	using the ideal gas equation	combustion of 383
the masses of the naturally occurring	470–475	composition of 191
formula units of the substance. It is	Study Sheet 471	in internal combustion engines 468
the sum of the atomic masses of the	using the molar volume at STP	Gas pressure. See also Gas
atoms in a formula unit. 265-266	479	boiling-point temperature and exter-
calculations 266	Charles' Law 465	nal 518–520
Formula unit A group represented by	concentration effect on reaction	breathing and 469
a substance's chemical formula, that	rates 593	in bubble formation 518–520
is, a group containing the kinds and	Dalton's Law of Partial Pressures	in combined gas law equation
numbers of atoms or ions listed in the	485–489, 523–527	476–478
chemical formula. 264	Study Sheet 488	Dalton's Law of partial pressures
Fortrel® (registered trademark) 669	densities of 48	485–489
Fractional charge, in chemical bonds	equilibrium constants and 602–603	equilibrium vapor 515–517
176	expansion 551	in gas stoichiometry 478–485
France, zinc-air batteries in 393	Gay-Lussac's Law 464	in ideal gas equation 470
Free radicals Particles with unpaired	greenhouse gases 430–431	internal combustion engine and
electrons. 706	heterogeneous equilibria and	468
Fructose 650–651	606–608	number of gas particles and 466
Functional group A small section of an	ideal 461	standard 479
organic molecule that to a large extent	ideal gas calculations 470–478	temperature and 464
determines the chemical and physical	instrument-carrying balloons and	volume and 462–463
characteristics of the molecule. 638	469	Gas stoichiometry 478–485
Furnace method 414	internal combustion engine and	Gastric juice 482
Fusion Nuclear reaction that yields	468	pH and 347
energy by combining smaller atoms to	liquids changing from and into	Gay-Lussac's Law The pressure of a
make larger, more stable ones. 714,	510–512	gas is inversely proportional to the
718	model 460	volume it occupies if the number of
	molar volume 479	gas particles and the temperature are
G	noble 85	constant. 464
Galactose 650-651	partial pressure of 485–489, 571	Geometric sketch 210
	particle collisions 460	Geometry 209–213. See Molecular
Galapagos Islands, global warming ex-	pressure 461	shape
periments at 431 Galileo Galilei 9	pressure and industrial safety	Study Sheet 215
	477–478	German Cancer Research Center 94
Gallium-67, radioactive decay of 700	properties of 461	Gesellschaft fur Schwerionenforschung
Galvanizing nails 306	race cars and air density 475	(GSI) 94
Gamma aminobutanoic acid, gamma	real 460	Gide, Andre 75
aminobutyric acid, or GABA 645	relationship between number of gas	Giga (G) prefix 13
intoxicating liquids and 214	particles and pressure 466	Girard, Georges 11
Gamma ray A stream of high-energy	relationship between number of gas	Glacial acetic acid 250
photons. 131, 698	particles and volume 467	Global
antimatter and 155	relationship between pressure and	Global warming 430–431, 573, 597,
harmful effects of 706–707	temperature 464	649, 663, 717
penetration of the body 707	relationship between volume and	Glucose 650–651
in radioactive decay 698 Gas The state in which a substance can	pressure 462–463	empirical and molecular formulas of 271
THE STATE III WINCH A SUDSTAILCE CAll	relationship between volume and	O1 4/1

or fluorine atom of one molecule

and a hydrogen atom bonded to a

another molecule. 529-531

nitrogen, oxygen, or fluorine atom in

Clutamic acid attracture of 655	in chamical aquations 302	calubility of 555
Glutamic acid, structure of 655 Glutamine, structure of 655	in chemical equations 302 in endothermic reactions 323–324,	solubility of 555 Hydrochloric acid 248–249, 597
Glycerol or glycerin 639	590–591	as binary acid 250
Glycine, structure of 654	as energy 129	dissolving basic hydroxides 352
Glycogen 652–653	transfer 129–130	dissolving basic hydroxides 352 dissolving in water 248
Gold (Au)	Heat of reaction 322	dissolving limestone 354
atom of 89	Heavy-ion therapy 94	in formation of magnesium chloride
as malleable 85	Heavy water, freezing point of 59	411
origin of name 83	Heidelberg Radiology Clinic 94	forming name of 256
scanning tunneling microscope im-	Helium	in gastric juices 482
age of 88	to avoid the bends 572	in processing corn syrup 235
Gold-198, radioactive decay of 700	formation 718	production and use 71, 176, 249,
Graduated cylinder 21	Helium-4, in treating brain cancer 717.	400, 501
Gravitational attraction, weight and 16	See also Alpha particles	reaction with calcium carbonate
Green Chemistry 5	Hematite 294	300
decaffeinating coffee and 491	Hemoglobin 385	as strong acid 251, 253, 254, 340
Designing Safer Chemicals Award 5	carbon monoxide poisoning and	Hydrofluoric acid
development of new and better	385	forming name of 254
catalysts 597, 649, 663, 717	iron ions in 185	light bulbs and 401
Green Chemistry Challenge Awards	Heptane, octane rating and 637	used to make CFCs 400
5	Heterogeneous catalyst A catalyst that	Hydrogen (H)
Green Chemistry Program 5	is in the same phase as the reactants	in acid-base reactions 348–360
Making Chemicals from Safer Reac-	(so that all substances are gases or all	acids and 248-253
tants 276	are in solution). 596	atomic orbitals 134-141
Sea-Nine antifoulant and 5	Heterogeneous equilibrium An	from Big Bang 718
spray paint and 490	equilibrium in which the reactants	in Brønsted-Lowry acids and bases
Greenhouse gases 430, 573	and products are not all in the same	356–358
Greenspan, Alan 90	phase (gas, liquid, solid, or aqueous).	combustion 300, 321, 383
Ground state The condition of an atom	606–607	covalent bond formation 190
whose electrons are in the orbitals that	Hexane, solubility in 554–557	electronegativity of 524
give it the lowest possible potential	1-Hexanol 636	formation from water 383
energy. 138	3-Hexanol, molecular structure of 636	formation of hydrogen molecules
Group All the elements in a given col-	High-density polyethylene (HDPE) 669	190
umn on the periodic table; also called	Histidine, structure of 655	in formation of water 300–301
family. 85	Homogeneous catalyst A catalyst that	ion formation 182
Guitar strings, like electrons 132–134	is in the same phase as the reactants	isotopes of 92–93
-	(so that all substances are gases or all	nuclear fusion of 718
H	are in solution). 596	oxidation number of 378
Half-life The time it takes for one-half	Homogeneous equilibrium An equi-	position on preiodic table 87
of a sample to disappear. 702–704	librium system in which all of the	production and use 408, 597–600
Half-reaction Separate oxidation or	components are in the same phase	structure 96
reduction reaction equation in which	(gas, liquid, solid, or aqueous). 600	in synthesis gas 598
electrons are shown as a reactant or	Hormone 661	Hydrogenation A process by which
product. 374	Huber, Claudia 617	hydrogen is added to an unsaturated
Halogen	Hydrazine, production and use 456	triglyceride to convert double bonds
covalent bond formation 194	Hydride ion 236 Hydriodic acid	to single bonds. This can be done by
ion formation 182	forming name of 256	combining the unsaturated triglycer-
London forces in 532–533	production and use 453, 630	ide with hydrogen gas and a platinum catalyst. 659
in periodic table 85	Hydrobromic acid, forming name of	Hydrogen atom, electron wavesforms in
Hard water, soaps and detergents in 563	256	134–141
Hearst, William Randolph 255	Hydrocarbon Compounds that contain	Hydrogen bond The intermolecular
Heat The energy that is transferred	only carbon and hydrogen. 191, 533	attraction between a nitrogen, oxygen,

catalytic converters and 385

in combustion reactions 383

in internal combustion engines 468

London forces among 532-533

from a region of higher temperature

to a region of lower temperature as

a consequence of the collisions of

particles. 129

hydroxide ions. 341

in ethanol/water solutions 552	Hydroxyapatite, in tooth enamel 354	London forces and 532
predicting existence of 535	3-Hydroxybutanal 645	name of 83
in proteins 658	17-Hydroxyprogesterone, molecular	production and use 399
Hydrogen bromide, threshold limit	structure of 662	structure of 97
value, or TLV 498	Hypochlorite ion	tincture of 532
Hydrogen carbonate ion	in bleach 356	Iodine-125
as amphoteric 359	sunlight and swimming pools 405	electron capture by 712
as weak base 343	Hypothesis, in scientific method 8-9	radioactive decay of 697
Hydrogen chloride 176	•	iodine-131 706–707
chemical bonds in 176	I	Iodine pentafluoride, production and use
dipole-dipole attractions 523	Ideal Gas A gas for which the ideal gas	407, 451
dissolved in water 248	model is a good description. 461	Ion Any charged particle, whether posi-
solubility in water 569	calculations involving 470–478	tively or negatively charged. 90–92
Hydrogen cyanide 597	equation stoichiometry and	anion 91. See also Anion
molecular geometry of 213	478–483	cation 91. See also Cation
Hydrogen fluoride	Ideal gas constant (R) 470	charges on monatomic 184
hydrogen bonds and 529	Ideal Gas Equation 470–475	formation of 177
Hydrogen halides, as polar molecules	combined gas law equation and 476	monatomic anion charges 182
529	equation stoichiometry and	monatomic anion names 236
Hydrogen peroxide	480–485	monatomic cation. See Cation,
aging and 376 composition of 175	Ideal gas model The model for gases	monatomic polyatomic ion
dark bottles and 407	that assumes (1) the particles are	predicting charges 182–185
empirical and molecular formulas	point-masses (they have mass but no	size of 185
of 271	volume) and (2) there are no attrac-	spectator 315–316
as oxidizing agent 376	tive or repulsive forces between the	symbols for 91
Hydrogen sulfate ion 356	particles. 461	Ionic bond The attraction between a
as cleaning agent 356	Incandescent light bulbs 472	cation and an anion. 177–179
as weak acid 254, 340	Induced dipole 532	in ionic compounds 180
Hydrogen sulfide	Industrial chemistry 4, 5	predicting existence of 524–527
threshold limit value, or TLV 498	Infrared (IR) radiation 131	Ionic compound A compound that
Hydrolysis A chemical reaction in	Inner transition metals The 28 ele-	consists of ions held together by ionic
which larger molecules are broken	ments at the bottom of the periodic	bonds. 180, 236–250
down into smaller molecules by a	table. 86	as bases 343
reaction with water in which a water	Insoluble substances 316–317, 554–557	binary 239, 242, 372-374
molecule is split in two, each part	Instantaneous dipole 532	formula mass of 265-266
joining a different product molecule.	Intermolecular attraction Attraction	formulas to names 239-241
665	between molecules. 529–533	names to formulas 242-243
Hydronium ion H_3O^+ 248–249,	dipole-dipole attraction 523	polyatomic ions is 185–187
340–341	hydrogen bonds 529–531	reactions of acids with 349
in acid-base reactions 348–353	London forces 532–533	recognizing from formulas 239
acids and 248–254	Internal combustion engine 468	solutility of 317
pH and 346–348	effects of weather on 474 gases and 468	solution of 309–311
Hydrophilic ("water loving") A polar	e	as strong and weak bases 343
molecule or ion (or a portion of a	International System of Measurement 10–19	structure of 185–187
molecule or polyatomic ion) that is	abbreviations 13	types of 239
attracted to water. 558	metric prefixes 12–13	uses of 181, 186
Hydrophobic ("water fearing") A	units derived from base units 12	Ionizing radiation Alpha particles, beta
nonpolar molecule (or a portion of a molecule or polyatomic ion) that is	Intestines 665	particles, and gamma photons, which are all able to strip electrons from
not expected to mix with water. 558	Intoxicating liquids 214	atoms as they move through matter,
Hydrothermal vent 617–618	Iodide ion, solubility of compounds with	leaving ions in their wake. 706
Hydroxide ion	317	Iridium (Ir), in catalytic converter 385
covalent bond formation 193	Iodine (I)	Iridium-192, checking pipe joints and
solubility of compounds with 317	beta emission and 696	711
Hydroxides Compounds that contain	diatomic molecules of 97	Iron (Fe)
hydroxide ions 341	electron capture and 697	electron configuration and orbital

electron capture and 697

electron configuration and orbital

	771 . 1 (17)	
diagram for 150	Kilojoule (kJ) 128	elemental symbol for each atom in
formation of 719	Kilometer (km) 13	the molecule, lines to show covalent
formation of pig 382, 485	Kilopascal (kPa) 461	bonds, and pairs of dots to indicate
global warming and 430–431	Kinetic energy, KE The capacity to do	lone pairs. 190–194, 195–205
as limiting reactant in global warm-	work resulting from the motion of an	general steps for drawing 200, 460
ing 430	object. 121	resonance and 207–209
Iron(II) sulfate, in global warming ex-	chemical reactions and 321–322	simple procedure 196–198
periments 431	in formation of water 321	Study Sheet 198–199
Iron(III) sulfate, formula mass calcula-	internal and external 129	Libraries, of drugs 649
tions for 266, 268	mass and 121	Life
Iron-59 712	of reactant molecules 587–588	hydrogen bonds and 530
Island of stability, of nuclides 695	solution of ammonium nitrate and	origin of 616–617
Isobutene, use 638	322	Light bulbs
Isoleucine (Ile, I), molecular structure	velocity and 121	argon gas in 488
of 654	Kinetic molecular theory. See Particle	filament evaporation in 472, 475
Isomers Compounds that have the	nature of matter	flash tubes 499
same molecular formula but different	Knockout drops 206	fluorescent 497
molecular structures. 206	Krypton, light bulbs and 475	"Like dissolves like" guideline, for solubility 554–557
Lewis structures of 206–207	Krypton-81 693, 710	Lime 409
of organic compounds 634	L	Lime 409 Limestone 354, 592
Isooctane 637	L	acid rain and 255
Isopropyl alcohol. <i>See</i> 2-propanol Isotopes Atoms that have the same	Lactase, in digestion 664	increasing permeability of 249
number of protons but different num-	Lactic acid, in cosmetic lotion 368	Limestone caverns 368
bers of neutrons. They have the same	Lactose, or milk sugar 652	Limiting reactant The reactant that
atomic number but different mass	Laskowski, Edweard R. 663	runs out first and limits the amount
numbers. 92–94	Latent fingerprints 517	of product that can form. 422–427
atomic numbers of 93	Law of Conservation of Energy	global warming and 430–431
of carbon 102	Energy can be neither created nor de-	how chosen 422–423
mass numbers of 93	stroyed, but it can be transferred from	Study Sheet 426
in nuclear reactions 698	one system to another and changed	Linear geometry The geometric ar-
symbol for 692–693	from one form to another. 122	rangement that keeps two electron
Isovaleraldehyde 641–642	Lawrence Laboratory 701	groups as far apart as possible. It leads
350 / 412 / 412 / 512	L-dopa 8	to angles of 180° between the groups.
J	Lead(II) ion, solubility of compounds	213
1 . 1 . 11 . 100	with 317	Linear molecules 213, 215
Jeans, James Hopwood 90	Lead (Pb)	Line drawing 558, 635
Jesus of Nazareth 710	in creating elements 110 94	Ling Po 7
Jewelry, elements in 83	density of 47	Liquid The state in which a substance
Joule, J The accepted SI unit for energy.	gasoline and 408	has a constant volume at a constant
127	lead-206, in radioactive decay series 705	temperature but can change its shape.
K	Lead-acid batteries, chemistry of 393	76, 78
	Lebowitz, Fran 33	boiling 518–520
Kaposi's sarcoma 649	Le Chatelier's principle If a system at	dissolving gases in 570
Kelvin, a temperature unit 19	equilibrium is altered in a way that	dissolving solids in 564–569
Kelvin scale 11, 18–19	disrupts the equilibrium, the system	dynamic equilibrium between va-
gas temperature and 461	will shift so as to counter the change.	pors and 571
temperature conversions for 58–60	614–616	heterogeneous equilibria and
Kerosene, London forces and 532	Leclanché cell 390–391	606–607
Ketone A compound that have a hy-	Length 14–15	Liquid-liquid solutions 311
drogen atom or a hydrocarbon group	range of 15	Liquid elements 87
connected to a -CHO group. 642	Leucine (Leu, L), structure of 654	Liter 12
Kettering, Charles F. 132	Levi, Primo 3	Lithium (Li)
Khirbat Qumrân 710	Levocarbidopa, in Parkinson's disease 8	from Big Bang 718
Kilo (k) prefix 13	Levodopa, in Parkinson's disease 8	electron configuration and orbital
Kilogram (kg) 11	Lewis structure A representation	diagram 144
Kilogram (kg) 11	of a molecule that consists of the	formation of 718

Lithium-7, in treating brain cancer 717	Marble, acid rain and 255	Metallic bond The attraction between
Lithium batteries 393	Margarine 659	the positive metal cations that form
Lithium hydroxide, uses 341	Martin, John 430–431	the fundamental structure of a solid
Litmus, detecting acids and bases with	Mass The amount of matter in an	metal and the negative charge from
348	object. Mass can also be defined as	the mobile sea of electrons that sur-
London forces The attractions pro-	the property of matter that leads to	round the cations. 534
duced between molecules by instanta-	gravitational attractions between	Metallic elements 86
neous and induced dipoles. 532-533	objects and therefore gives rise to	attractive forces in 534–535
molecular size and 532	weight. 16–17	ion charges of 182–184
Lone pair Two electrons that are	base unit of 11	Metalloids or semimetals The ele-
not involved in the covalent bonds	density and 47–49	ments that have some but not all of
between atoms but are important for	of elements and compounds	the characteristics of metals. 86
explaining the arrangement of atoms	267–271	bonding patterns of 199
in molecules. They are represented by	English-metric unit conversions of	in periodic table 86
pairs of dots in Lewis structures. 189	55	Metals The elements that (1) have a
Low-density polyethylene (LDPE) 669	kinetic energy and 121	metallic luster, (2) conduct heat and
Lucretius 345	measuring 16–17	electric currents well, and (3) are mal-
Luminous intensity, base unit for 11	percentage by 52–53	leable. 85, 98–99
Luminous tubes 477	range of 17	electrolysis to purify 391
Lungs, gases in 469	weight and 16–17	forming cations 181
Lye. See Sodium hydroxide	weighted average 100	sea of electrons model 99
Lye soap 562	Mass density Mass divided by volume	Meter 10, 11
Lysine (Lys, K)	(usually called density). 47–51	Methamphetamine, molecular structure
molecular structure of 655	as conversion factor 49–51	of 558–559
in salt bridges 658	Mass number The sum of the number	Methamphetamine hydrochloride
	of protons and neutrons in an atom's	558–559
M	nucleus. 93	Methane 187, 191
"Mickey Finn" sedative 206	binding energy versus 714	combustion of 120
Magic numbers and nuclear stability 94,	in nuclear equations 699	covalent bond formation 191
713	in nuclides 692	in hydrogen gas production
Magnesium (Mg), meals ready to eat	Mass percentage 52 Matches, chemicals in 305	597–600
(MREs) and 549		molecular shape 210–211 solubility in water 569
Magnesium chloride, production and	Matter Anything that has mass and takes up space. 16	Methanethiol, in natural gas 383
use 411	chemistry and 4	Methanoic acid 640
Magnesium oxide 241	classification of 172–175	Methanol 187
Magnetic field, in electromagnetic radia-	existence of 155	density of 50
tion 130	origin of 718	hydrogen bonds and 531
Magnetic resonance imaging (MRI) 708	as solid, liquid, or gas 76–80	as polar molecule 529
Main-group element The elements in	Mayo Clinic 663	production and use 408, 503, 603
groups 1, 2, and 13 through 18 (the	Meals ready to eat (MRE) 549	water solubility of 556
"A" groups) on the periodic table; also	Measurement 9, 9–23	Methionine (Met, M), structure of 655
called representative elements. 86	digital readouts 23	Methyl alcohol 196. See also Methanol
Malleable Capable of being extended	International System of 10–11	Methyl bromide
or shaped by the blows of a hammer.	reporting values from 20	determing Lewis structure 200–201
85	trailing zeros and 22	ozone layer and 3
Maltase, in digestion 664	uncertainty in 20–23, 39	threshold limit value, or TLV, and
Maltose, molecular structure of 652	Medicine, uses of radioactive substances	498
Manganese (Mn)	in 707–708	3-Methylbutanal 641–642
in dry cell batteries 390-391	Mega (M) prefix 13	Methyl cyanoacrylate, molecular struc-
how made 292	Meitner, Lise 82	ture of 216
Manganese(II) oxide, naming 240	Meniscus, in measurement 21	Methylene chloride, in decaffeinating
Manganese(II) phosphate	Menstrual cycles, hormones in 662	coffee 491
production and use 406	Menthol 560	Methyl ethyl ketone or MEK, molecular
uses 368	Metal-nonmetal compounds	structure of 642
Manganese dioxide, in dry cell batteries	bonds in 525	2-Methylpropene 638
390–391	formulas and names of 239	Metric-metric unit conversions 35–37

Metric prefixes 12–13 table of 13	composed of molecules. In such compounds, all of the bonds between	charges 182 naming 236
Metric system 10. See also International	atoms are covalent bonds. 180	Monatomic cation Positively charged
System of Measurement	attractive forces in 535	particles, such as Na ⁺ , Ca ²⁺ , and
MeV (million electron volts) 713	in oxidation-reduction reactions	Al ³⁺ , that contain single atoms with
micro (mu) prefix 13	375	a positive charge. 183. See also Cat-
Microwaves 131	water solubility of 555	ion, monatomic
Mifepristone 681	Molecular dipole A molecule with an	formation 182–183
Milk, pH of 347	asymmetrical distribution of positive	naming 236
milli (m) prefrix 13	and negative charge. 523	roles in body 185
Millimeter of mercury (mmHg), as unit	Molecular equation. See Complete equa-	Monatomic ion, charges 184
of pressure 461	tion	Monoethanolamine 613
Miscible Can be mixed in any propor-	Molecular formula The chemical	Monomer The repeating unit in a poly-
tion without any limit to solubility.	formula that describes the actual	mer. 652
552	numbers of atoms of each element in	in addition polymers 669
Mixture A sample of matter that con-	a molecule of a compound. 271	in polysaccharides 652–653
tains two or more pure substances and	from empirical formula 275–278	in proteins 654
has variable composition. 173	empirical formulas versus 271	Monoprotic acid An acid that donates
of gases 485	Study Sheet 277	one hydrogen ion per molecule in a
Model A simplified approximation of	Molecular geometry The description	reaction. 250, 340
reality. See also Scientific model	of the arrangement of all the atoms	Monosaccharide Sugar molecule with
calculating 433	around a central atom in a molecule	one saccharide unit. 650
collision theory as 586-592	or polyatomic ion. This description	Monosodium glutamate (MSG), taste
of gases 79	does not consider lone pairs. 209-	and 345
ideal gas 461	216. See also Geometry	Monsanto Company 597
of liquids 78	Molecular mass The weighted aver-	Moss Landing Marine Laboratories 430
of metallic elements 98	age of the masses of the naturally	Mount Everest, atmospheric pressure at
of solids 76–77	occurring molecules of a molecular	the top 521
strengths and weaknesses of 187	substance. It is the sum of the atomic	MTBE 641
valence-bond 188–193	masses of the atoms in a molecule.	Multiplication
Moderator A substance in a nuclear	262–263	rounding off for 40–45
reactor that slows neutrons as they	calculating 263	significant figures for 40–45
pass through it. 716	in calculating molecular formulas	Mylar, as polyester 669
Molarity (abbreviated M) Moles of	275–276	
solute per liter of solution. 433–438	Molecular models 96	N
equation stoichiometry and	Molecular polarity, predicting 528	Names
434–438	Molecular Shape 209–211	for acids 256–258
Molar mass The mass in grams of one	ball-and-stick model 210	for binary covalent compounds 235
mole of substance. 104–107	geometric sketch 210	for chemical compounds 259–260
from atomic mass 104	space-filling model 210	for elements 82–83
calculations using atomic mass 105	Molecular size, London forces and	for ionic compounds 236–244
calculations using ionic formula	532–533	for organic compounds 637
mass 266	Molecule An uncharged collection of	Nano (n) prefix 13
calculations using molecular mass	atoms held together with covalent	Natrium 83
263	bonds. 96	Natural gas 187
in equation stoichiometry 416–420 in ideal gas equation 471	diatomic 97 as formula unit 264	Nature, elements found in 82
from ionic formula mass 265		Neon (Ne)
from molecular mass 262–263	of hydrogen 96 in molar mass 262	electron configuration and orbital
Molar volume at STP 479	shapes of 209–216	diagram 145
Mole (mol) The amount of substance	Momentum, of particles in evaporation	luminous tubes and 477
that contains the same number of	511	in neon lights 477, 489
particles as there are atoms in 12 g of	Monatomic anions Negatively charged	Nerve cells
carbon-12. 11, 102–103	particles, such as Cl^- , O^{2-} , and N^{3-} ,	intoxicating liquids and 214
in equation stoichiometry 478–485	that contain single atoms with a nega-	taste and 345
in ideal gas equation 479	tive charge. 182. See also Anion,	Net ionic equation A chemical equa-
Molecular compound A compound	monatomic	tion for which the spectator ions have

been eliminated, leaving only the	oxidation-reduction and 375
substances actively involved in the	Nitrogen narcosis 572
reaction. 316	Nitrogen oxides
Net rate of solution 565–567	in automobile exhaust 127
Neutralization reaction A chemical	Nitroglycerine, in decomposition reac-
reaction between an acid and a base.	tions 383
See Acid-base reaction	Nitrosyl chloride, production and use
Neutron An uncharged particle found	631
in the nucleus of an atom. 89 in nuclear fission 714–715	Nitrosyl fluoride, molecular geometry 216
as nuclear glue 694	Nitrous oxide, formation of 304
nuclear stability and 694–695	Noble gases, structure 95
Newton (N), a unit of force 16	Node The locations in a waveform
NiCd batteries. See Nickel-Cadmium	where the intensity of the wave is
batteries	always zero. 133
Nickel (Ni), in the creation of elements	Nomenclature. See Chemical nomen-
110 and 111 94	clature
Nickel-60, gamma ray emission by 698	Nonmetals The elements that do not
Nickel-cadmium battery, chemistry of	have the characteristics of metals.
392	Some of the nonmetals are gases at
Nicotine 293	room temperature and pressure, som
Nippoldt, Todd B. 663	are solids, and one is a liquid. Variou
Nitrate ion	colors and textures occur among the
resonance and 207-209	nonmetals. 85
solubility of compounds with 317	forming anions 181
Nitric acid	Nonpolar covalent bond A covalent
acid rain and 255	bond in which the difference in elec
formation of 616	tron-attracting ability of two atoms
forming name of 257	a bond is negligible (or zero), so the
production and use 405	atoms in the bond have no significan
reaction with sodium hydroxide	charges. 176
349–351, 349–353	predicting existence of 524–527
solution of 349	Nonpolar molecular substance, solubili
as strong acid 253	and 554–555
Nitride ion, forming name of 236	Normal boiling-point temperature
Nitril hydratase 597	The temperature at which the equi-
Nitrogen (N)	librium vapor pressure of the liquid
covalent bond formation 192	equals one atmosphere. 521
diatomic molecules of 97	Notation, for nuclides 692–693
electron configuration and orbital	Nuclear chemistry The study of the
diagram 145	properties and behavior of atomic
ion formation 182	nuclei. 691
liquid 127	Nuclear decay series A series of radio
London forces and 534	active decays that lead from a large
structure of 97	unstable nuclide, such as uranium-
Nitrogen-13, radioactive decay of 700	238, to a stable nuclide, such as lead
Nitrogen-14, in radiocarbon dating 702	206. 705
Nitrogen dioxide	Nuclear energy 713–718
acid rain and 255	Nuclear equation The shorthand nota
nitric acid and 616	tion that describes nuclear reactions
threshold limit value, or TLV and	It shows changes in the participating
498	nuclides' atomic numbers (the num-
Nitrogen molecules, velocities of 460	ber of protons) and mass numbers
Nitrogen monoxide 596	(the sum of the numbers of protons
in acid rain 255	and neutrons). 698–702

catalytic breakdown of 596

how made 472

oxidation-reduction and 375 ogen narcosis 572 ogen oxides in automobile exhaust 127 oglycerine, in decomposition reacions 383 osyl chloride, production and use osyl fluoride, molecular geometry ous oxide, formation of 304 ole gases, structure 95 le The locations in a waveform where the intensity of the wave is lways zero. 133 nenclature. See Chemical nomen**imetals** The elements that do not have the characteristics of metals. Some of the nonmetals are gases at oom temperature and pressure, some re solids, and one is a liquid. Various olors and textures occur among the onmetals. 85 forming anions 181 polar covalent bond A covalent ond in which the difference in elecron-attracting ability of two atoms in bond is negligible (or zero), so the toms in the bond have no significant harges. 176 predicting existence of 524–527 polar molecular substance, solubility nd 554–555 mal boiling-point temperature The temperature at which the equiibrium vapor pressure of the liquid quals one atmosphere. 521 ation, for nuclides 692–693 **clear chemistry** The study of the properties and behavior of atomic uclei. 691 clear decay series A series of radioctive decays that lead from a large ınstable nuclide, such as uranium-238, to a stable nuclide, such as lead-206. 705 clear energy 713-718 clear equation The shorthand notaion that describes nuclear reactions. shows changes in the participating uclides' atomic numbers (the num-

Nuclear fission 714-715

Nuclear fusion 718

Nuclear power plant 716–717 **Nuclear reaction** A process that results in a change in an atomic nucleus (as opposed to a chemical reaction, which involves the loss, gain, or sharing of electrons). 698-702 Nuclear reactors 714-717 Nuclear stability 694-695, 713-714 Nucleon number The sum of the numbers of protons and neutrons (nucleons) in the nucleus of an atom. It is also called the mass number. 692 **Nucleons** The particles that reside in the nucleus of atoms (protons and neutrons). 692 **Nucleus** The extremely small, positively charged core of the atom. 89 of atom 89 creation of new elements and 94 electrons around 134-140 of helium atoms 95 mass number and 93 stability of 694 Nuclide A particular type of nucleus that is characterized by a specific atomic number (Z) and nucleon number (A). 692 band of stability of 695 in nuclear equations 698-702 radioactive 703 symbol 692-693 uses for radioactive (table) 712 Numbers, exact or not 41 Nutrients, for phytoplankton 430 Nylon 667 molecular structure of 667 production of 275, 667-668 Nylon-66 275-276 O

"Oil rig" mnemonic 373 Objectives 6 Observation, in scientific method 8-9 Octane rating 637 Octet of electrons 189-190, 199-200 Oil 354, 532–533 Oil industry 354 Olestra 660-661, 718-719 Oligopeptide 656 Open-chain forms, of monosaccharides 650-651 Orange juice, pH of 347 Orbital diagram A drawing that uses lines or squares to show the distribution of electrons in orbitals and ar-

rows to show the relative spin of each

electron. 142, 144-145	defined 374	effect on gas solubility 571
Study Sheet 149, 198	oxidation numbers and 377–382	equilibrium vapor pressure as
Orbitals See Atomic orbitals	Oxoacid. See Oxyacid	515–516
Organic acid Carbon-based acids. 250	Oxyacid (oxoacid) Molecular sub-	Particle-particle attractions 523, 597
Organic chemistry The branch of	stances that have the general formula	summary 534–535
chemistry that involves the study	$H_aX_bO_c$. In other words, they contain	Particle nature of matter 76–80
of carbon-based compounds. 191,	hydrogen, oxygen, and one other ele-	gas 76, 79–80
634–648	ment represented by X; the a, b, and c	liquid 76, 78
Organic compound 634–648 alcohol 639	represent subscripts. 250	solids 76–77
	names for 257	Particles
aldehyde 641 alkane 637	as polar molecule 529	in atoms 89
alkene 638	Oxygen (O) in combustion reactions 383–385	attractive forces among 523–536
alkyne 638	covalent bond formation 193–194	in collision theory 586
amide 644	diatomic molecules of 97	in condensation 510
amine 643–644	electron configuration and orbital	in evaporation 511–512
arene 638–639	diagram 145	in gases 79
carboxylic acid 640	electronegativity of 524	in liquids 78
condensed formula 635	in formation of water 300–301	radiant energy as 130–131 in solids 76–77
ester 642–643	in internal combustion engines 468	space occupied 79
ether 641	ion formation 182–183	Pascal (Pa), pressure unit 461
how to describe 634-636	oxidation numbers for 378	Pearl ash, empirical formula for 274
ketone 642	structure 97	Pentane
line drawing 558, 635	Ozone	hexane solubility of 554
table of types 646–647	chlorine catalyzed destruction	in solution 311
Organophosphorus compounds 293	594–596	water solubility of 554
Oxalic acid 640	as greenhouse gas 430	Pepper, spiciness of 559
uses 235	process of destruction 586–590	Pepsin, in digestion 664
Oxidation Any chemical change in	- -	Peptide A substance that contains two
which at least one element loses elec-	P	or more amino acids linked together
trons, either completely or partially.	p block, of elements 146–148	by peptide bonds. 656
372–373, 375 Oxidation-reduction reaction The	Paint spraying, preventing air pollution	how form 616–618
	490	Peptide bond An amide functional
chemical reactions in which there	Palladium, in catalytic converter 385	group that forms when the carboxylic
is a complete or partial transfer of electrons, resulting in oxidation and	Pancreatic amylase, in digestion 664	acid group on one amino acid reacts
reduction. These reactions are also	Pancreatic lipase, in digestion 664	with the amine group of another
called redox reactions. 372–375	Paper, saving acidic 355	amino acid. 656
within batteries 388–393	Parkinson's disease 7–8	Percentage 52–53
half-reaction 374	positron emission tomography and	as conversion factor 52
oxidation 372	155	by mass, definition 52
oxidation numbers (or states)	scientific method and 7-8	by volume 52
377–382	Partial charge	Percentage calculations 52–53, 57
reduction 373	in chemical bonds 176, 524–527	in calculating empirical formulas
uses of 371	in hydrogen bonds 529	274
Oxidation number (or state) A tool	in London forces 532–533	in calculating molecular formulas
for keeping track of the flow of elec-	Partial electron transfer in oxidation-re-	278
trons in redox reactions. 377–382	duction reactions 375	Percent yield The actual yield divided
assignment of oxidation numbers	Partially hydrogenated triglycerides	by the theoretical yield times 100.
378	659–660	428–430
Study Sheet 378	Partial pressure The portion of the to-	why less than 100% 428–429
Oxidation state. See Oxidation number	tal pressure that one gas in a mixture	Periodic table of the elements 84–88
Oxidizing agent A substance that gains	of gases contributes. Assuming ideal	electronegativity and 524
electrons, making it possible for an-	gas character, the partial pressure of	group number 85
other substance to lose electrons and	any gas in a mixture is the pressure	group or family 85
be oxidized. 374	that the gas would yield if it were	hydrogen, position on periodic table
aging and 376	alone in the container. 485	87

	Pi () C 12	5.1
metals, nonmetals, and metalloids	Pico (p) prefix 13	Polyprotic acid An acid that can do-
86 modern model of the atom and	Pig iron, formation of 485 Plastic fingerprints 517	nate more than one hydrogen ion per molecule in a reaction. 250
146–154	Platinum (Pt) 98	Polysaccharide Molecule with many
periods 87	as catalyst 616	saccharide units. 652
representative (or main-group)	in catalytic converters 385, 596	digestion products 664
elements, transition metals, and	density of 48	Polystyrene 670–671
inner transition metals 86	Plutonium (Pu), in creation of new ele-	Positron A high-velocity anti-electron
Periods The horizontal rows on the	ments 94	released from radioactive nuclides that
periodic table. 87	Plutonium-239	have too few neutrons. 155, 697
Peroxides, oxidation numbers of 378	half-life 703	discovery of 155
Petroleum 532-533	in radioactive wastes 704	Positron emission In radioactive nu-
pH 346-347	radioactive decay 703	clides that have too few neutrons, the
acid rain and 346	Polar covalent bond A covalent bond	conversion of a proton to a neutron,
Pharmaceuticals 649	in which electrons are shared unequal-	which stays in the nucleus, and a
Phenylalanine (Phe, F), molecular struc-	ly, leading to a partial negative charge	positron, which is ejected from the
ture of 655	on the atom that attracts the electrons	nucleus. 697
Phosgene gas, production and use 631	more and to a partial positive charge	nuclear equations for 699–701
Phosphate, production 377	on the other atom. 176	Positron emission tomography (PET)
Phosphate ion, solubility of compounds	dipole-dipole attractions and	155, 708
with 317	523–524	Potassium-40
Phosphate rock, in furnace method 261	predicting in molecules 524–528	radioactive decay of 697
Phosphide ion 236	Polarity	uses for 697
Phosphoric acid 356	of amphetamine and epinephrine	Potassium carbonate, empirical formula
forming name of 257	558 -Chards 524 525	determination 274
furnace method of preparation 261	of bonds 524–525	Potassium chlorate, production and use 444
neutralizing 436 production of 414	of capsaicin 559 molecular 528	Potassium hydroxide, production and use
reaction with sodium hydroxide	predicting in molecules 528–529	341, 409
352	solubility and 554	Potassium nitrate
in toilet bowl cleaners 356	Polar molecular substance, solubility and	production and use 401
uses 235, 250	554–555	in voltaic cells 390
Phosphorus (P)	Polonium-210, radioactive decay of 700	Potassium perchlorate, production and
covalent bond formation 193	Polonium-218, in radioactive decay 705	use 445
in furnace method 414	Poly(ethylene terephthalate) 671	Potassium permanganate, production
ion formation 182	Poly(vinyl chloride), PVC 670–671	and use 447
London forces in 534	Polyatomic ion A charged collection	Potato chips 660
in oxidation-reduction reactions	of atoms held together by covalent	Potential energy (PE) A retrievable,
379	bonds. 185–187	stored form of energy an object pos-
in photophor 272	balancing equations and 303, 306	sesses by virtue of its position or state.
production of 377, 454	formulas and names 238	122
Phosphorus pentachloride, production	with hydrogen 238	chemical reactions and 321-323
and use 410	nonsystematic names 238	electron orbitals and 138
Phosphorus tribromide 429	Polychlorinated biphenyl (PCB) 278	in formation of water 321
Phosphorus trichloride, production and	Polyester 668–669	stability and 122–124
use 606	Polyethylene 669	Precipitate A solid that comes out of
Photons Tiny, massless packets or par-	Polymer A large molecule composed of	solution. 312
ticles of radiant energy. 130	repeating units. 652 addition 669–670	Precipitation The process of forming a
Photophor, empirical formula for 272 Physical states, in chemical equations	formulas for 667	solid in a solution. 312 tooth decay and 354
301	polysaccharides as 652–653	Precipitation reaction A reaction in
Physics	proteins as 656	which one of the products is insoluble
chemistry and 76	synthetic 666–671	in water and comes out of solution as
of electrons 132–141	Polypeptide 656. See also Protein	a solid. 312–318
origin of matter and 616–617	nylon as 667	of calcium carbonate 312–315
Phytoplankton, global warming and	silk as 666	Study Sheet 318
430–431	Polypropylene 670–671	writing equations for 318–319

Precision The closeness in value of a	hydrogen bond 658	clide whose numbers of protons and
series of measurements of the same	primary structure 656	neutrons place it outside the band of
entity. The closer the values of the	ribbon convention 657	stability. 695
measurements, the more precise they	salt bridge 658	Radioactive substances
are. 20	secondary structure 656	smoke detectors, pipe joint check,
in reporting measured values 39	tertiary structure 657–658	food irradiation, radioactive trac-
Prefixes. See Metric prefixes	Proton A positively charged particle	ers 711
Preserving books 355	found in the nucleus of an atom. 89	uses 707–712
Presidential Green Chemistry Challenge	in artificial elements 94	Radioactive tracer A radioactive
Award 597	in atoms 89–90	nuclide that is incorporated into
		substances that can then be tracked
Pressure Force per unit area. See Gas	in Bronsted-Lowry acids and bases	
pressure; See Gas, pressure	356	through detection of the nuclide's
Pressure cooker 520	in ions 90–91	emissions. 711
Primary battery A battery that is not	in isotopes 92–93	Radiocarbon (or carbon-14) dating
rechargeable. 392	mass number and 93	The process of determining the age of
Primary protein structure The se-	MRI and 708	an artifact that contains material from
quence of amino acids in a protein	nuclear stability and 694-695, 713	formerly living plants or animals by
molecule. 656	in nuclides 692–693	analyzing the ratio of carbon-14 to
Principal energy level A collection of	origin of the elements and 718	carbon-12 in the object. 709–710
orbitals that have the same potential	Publication, in scientific method 9	Radio waves 131
energy for a hydrogen atom, except	Pure substance A sample of matter that	Radium-226
for the first (lowest) principal energy	has constant composition. There are	half-life 703
level, which contains only one orbital	two types of pure substances: ele-	radioactive decay 705
(1s). 138	ments and compounds. 173	use 712
Probabilities, electron behavior and 132,	Putrescine, molecular structure of 643	Radon-222
136	_	half-life 703
Products The substances that form in	Q	lung cancer and 704
a chemical reaction. Their formulas	Quantum mechanics 155	in radioactive decay series 705
are on the right side of the arrow in a	=	Rags, in paper 355
chemical equation. 301	Quick lime, formation of 409	Rapture of the deep 572
Progesterone, molecular structure of 662	R	Rate of chemical reaction The number
Proline (Pro, P), molecular structure of	TX	of product molecules that form (per-
655	Race cars and air density 475	haps described as moles of product
Propane 191	Radiant energy Energy that can be de-	formed) per liter of container per
1,2,3-Propanetriol 639	scribed in terms of oscillating electric	second. 592–596
2-Propanol	and magnetic fields or in terms of	concentration effect 593-594
hydrogen bonds in 530	photons. 130–132	temperature and 592-593
Lewis structure 196	spectrum 131	Rate of condensation The number of
molecular structure of 530	the wave view 130	particles moving from gas to liquid
2-Propanone 642	wavelength 130	per second. 513
Propionic acid	Radiation	Rate of evaporation The number of
molecular structure of 556	effects on the body 706-707	particles moving from liquid to gas
water solubility 556	treatment for cancer 707	per second. 511–513, 512–513
Proportionality	Radiator coolants 554	strengths of attractions and 512
direct 463	Radioactive decay One of several	surface area and 512
inverse 463	processes that transform a radioactive	temperature and 513
Propylene	nuclide into a more stable product or	three factors that determine 512
hexane solubility of 557	products. 695	Rate of solution. See Solution, Rate of
in polypropylene 670	effects on body 706–707	Ratio
	rates and half-life 702–704	empirical formulas and 271
Propylene glycol, molecular structure of 554	Radioactive decay series 704–705	molar 270
	Radioactive emissions	
Protein Natural polypeptide. 654–655,		neutron-to-protons 694–695
656	alpha particle 696	Stoichiometric 422
alpha helix 656	beta emission 696	Rational drug design 649
beta sheet 656	gamma rays 698	Reactants The substances that change
digestion products 664	positron emission 697	in a chemical reaction. Their formulas
disulfide bond 658	Radioactive nuclide An unstable nu-	are on the left side of the arrow in a

Roasting 430 chemical equation. 301 rechargeable battery. 392 Secondary protein structure The arequilibrium disruption and 610-Rohm and Haas Company 5 Roman numeral, in naming monatomic rangement of atoms that are close to limiting 423-427 each other in a polypeptide chain. cations 236 Reaction. See Chemical reaction Examples of secondary structures are Roots of nonmetal names 236 Reaction Rate. See Rate of chemical alpha helix and beta sheet. 656-657 Roscoelite 297 reaction Second period elements, electrons in Rounding off 39-47 Rechargeable batteries 392 for addition and subtraction 45-47 143-145 Recycling 670 Selenide ion 236 for multiplication and division Red giant stars 719 40-45 Selenium covalent bond formation 194 Red litmus paper, detecting bases with Roundup 597 ion formation 182-183 RU-486 681 Redox reaction. See Oxidation-reduction **Semimetals** The elements that have Ruby 290 some but not all of the characteristics reaction S of metals. 86 **Reducing agent** A substance that loses electrons, making it possible for an-Serine (Ser, S) s block, on peridoic table 146-147 other substance to gain electrons and hydrogen bonds between 658 Saccharide Sugar, starch, and cellulose. molecular structure of 655 be reduced. 374 Also called carbohydrates. 650-653. **Reduction** Any chemical change in Shape. See Molecular shape See also Carbohydrate which at least one element gains elec-Shell 138. See also Principal energy Saliva, tooth decay and 354 trons, either completely or partially. level Salt. See Sodium chloride 373, 375 Shroud of Turin 710 **Salt bridge** (in proteins) A covalent Relative atomic mass 102 Side-chain, in anion acid 654 bond between two sulfur atoms on Relative solubilities 554 Significant figures The number of cysteine amino acids in a protein **Representative elements** The elements meaningful digits in a value. The structure. 658 in groups 1, 2, and 13 through 18 number of significant figures in a Salt bridge (in voltaic cells) A device (the "A" groups) on the periodic table; value reflects the value's degree of unused to keep the charges in a voltaic also called main-group elements. 86 certainty. A larger number of significell balanced. 390 Research, in scientific method 8 cant figures indicates a smaller degree Salt taste 345 Research chemist 585 of uncertainty. 39-47 Salt water separation 82 Resonance The hypothetical switchcounting the number of 41-42 San Simeon, California, protection from zeros and 42 ing from one resonance structure to acid rain in 255 another. 207-209 Silicon (Si) 300 **Saturated solution** A solution that has electronics grade 425 **Resonance hybrid** A structure that enough solute dissolved to reach the represents the average of the resometallurgical grade 425 solubility limit. 568, 568-569 nance structures for a molecule or purifying 425-426 dynamic equilibrium and 564-569 from silicon dioxide 423 polyatomic ion. 208 formation of 568-569 Resonance structures Two or more Silicon dioxide Saturated triglyceride A triglyceride Lewis structures for a single molecule citrine as 294 with single bonds between all of the or polyatomic ion that differ in the in furnace method 261 carbon atoms. 659 purifying silicon from 425-426 positions of lone pairs and multiple Scale, calcium carbonate in 320 bonds but not in the positions of the Silk Schrodinger, Erwin 134 atoms in the structure. 208 molecular structure of 666 Science Reversible reaction A reaction in nylon as substitute for 666 chemistry as 7-9 which the reactants are constantly Silver (Ag) existence of matter and 155 forming products and, at the same density of 48 time, the products are reforming the Scientific Method 7–9 ion charges of 237 Scientific model A simplified approxireactants. 251, 597-598 melting point of 60 mation of reality. 76, 98, 187 in chemical equilibrium 597-601 Silver ion, solubility of compounds with Scientific notation 4–5 disruption of equilibrium for 610 Scuba diving, gas solubility and 572 equilibrium constants for 602 Silver nitrate, in precipitation reaction Sea-Nine antifoulant 5 percent yield and 428 Review Skills sections 6 Seaborg, Glenn 701 Single-displacement reaction Chemi-Rhodium, in catalytic converter 385 Sea of electrons model for metals 99 cal change in which atoms of one

Seawater, pH and 347

Second (s), as unit of measurement 11

Secondary (or storage) battery A

element displace (or replace) atoms

of another element in a compound.

386-387

Ribbon convention for proteins 657

Ring forms, of monosaccharides

650-651

Sinkhole 368	Sodium perbromate, production and use	senting a molecule to show a some-
SI System of Measurement. See Interna-	407	what realistic image of the electron-
tional System of Measurement	Sodium sulfate, production and use 407,	charge clouds that surround the
Sixth principal energy level, electron	493	molecule's atoms. 96, 210
orbitals of 141	Sodium tripolyphosphate, production	Spandex (R), synthesis of 278
Slaked lime 409	and use 456	Special conditions, in chemical equations
Smelling salts 629	Soft drink, why bubbles form 572	301–302
Smog	"Solar system" model of the atom 132	Special topics
nitrogen dioxide in 605	Solid The state in which a substance	Acid Rain 255
Smoke detectors 711	has a definite shape and volume at a	A Greener Way to Spray Paint 490
Soap 560, 562–563	constant temperature. 76–77	Air Pollution and Catalytic Convert-
Society for Heavy-Ion Research 94	densities of 47–48	ers 385
Sodium (Na)	expansion when heated 77	A New Treatment for Brain Cancer
electrolysis and 391	heterogeneous equilibrium and	717
formation from sodium chloride	606–607	Be Careful with Bleach 356
383	Solid acid, in meals ready to eat 549	Big Problems Require Bold Solu-
ion 177–178	Solid elements 87, 98–99	tions - Global Warming and
ion formation 182	Solubility The maximum amount of	Limiting Reactants 430
Sodium aluminum sulfate, in baking	solute that can be dissolved in a given	Chemistry and Your Sense of Taste
powder 175	amount of solvent. 554–560	345
Sodium bromide, use 576 Sodium carbonate	gas 570–571	Chemistry Gets the Bad Guys 517
reaction with acid 343	guidelines 554 like dissolves like 554–555	Gas Solubility, Scuba Diving, and Soft Drinks 572
uses 343	soaps and detergents and 562–563	Global Warming, Oceans, and CO ₂
Sodium chlorate, production and use 408	in water 316–317, 569 guidelines 316	Torpedoes 573 Green Chemistry 5
Sodium chloride	Solute The gas in a solution of a gas in	Green Chemistry - Making Chemi-
electrolysis and 391	a liquid. The solid in a solution of a	cals from Safer Reactants 276
formation 178	solid in a liquid. The minor compo-	Green Chemistry - The Develop-
formula mass of 265	nent in other solutions. 311	ment of New and Better Cata-
formula unit of 264	gas as 570–571	lysts 597
oxidation-reduction and 372–373	in saturated solution 564	Green Decaf Coffee 491
solubility in water 569	Solution A mixture whose particles are	Hard Water and Your Hot Water
solution in water 309–311	so evenly distributed that the relative	Pipes 320
structure of 185, 185–186	concentrations of the components are	Harmless Dietary Supplements or
taste of 345	the same throughout. Solutions can	Dangerous Drugs 663
Sodium chromate 430	also be called homogeneous mixtures.	Molecular Shapes, Intoxicating
Sodium dichromate, production and use	chemical reactions in 549	Liquids, and the Brain 214
446, 454	dynamic equilibrium and 564–569	Olestra and Low-Fat Potato Chips
sodium dodecyl sulfate (SDS), as deter-	formation of 552–553	660–661
gent 563	of ionic compounds 309–311	Oxidizing Agents and Aging 376
Sodium fluoride, in toothpaste 181	molarity and 431–438	Precipitation, Acid-Base Reactions,
Sodium hydrogen carbonate	rate of 565–568	and Tooth Decay 354
production and use 343, 405	agitation 567	Recycling Synthetic Polymers 670
reaction with acids 343	factors that effect 565	Rehabilitation of Old Drugs and
Sodium hydrogen sulfate, production	surface area 565–566	Development of New Ones 649
and use 453	temperature effect 568	Safe and Effective? 279
Sodium hydroxide	saturated 568–569	Saving Valuable Books 355
aqueous solution of 341	solute and solvent 311	The Big Question - How Did We
formation 185	unsaturated 568	Get Here? 616
in neutralizing phosphoric acid 436	why form 550-553	The Origin of the Elements 718
reaction with nitric acid 349–353	Solvent The liquid in a solution of a gas	Wanted: A New Kilogram 11
uses of 185, 341	in a liquid. The liquid in a solution of	Why Create New Elements? 94
Sodium hypochlorite, production 485,	a solid in a liquid. The major compo-	Why Does Matter Exist, and Why
528, 536, 556, 557	nent in other solutions. 311	Should We Care About This
Sodium ions 91	Sour taste 345	Question? 155
taste and 345	Space-filling model A way of repre-	Zinc-Air Batteries 393

Spectator ions Ions that play a role in	at least one hydroxide ion in solution	tions and orbital diagrams for
delivering other ions into solution to	for every unit of substance added to	uncharged atoms 149
react but that do not actively partici-	water. 341	writing equations for combustion
pate in the reaction themselves. 315	identifying 344	reactions 384
Spectrum, of radiant energy 131–132	reactions of strong acids with	Styrene, in polystyrene 670
Spin. See Electron spin	349–353	Sublevel or subshell A given type (or
Spinels 291	Strong force The force that draws	shape) of orbital available at a given
Spodumene 297	nucleons (protons and neutrons)	principal energy level. 139
Spray paint 490	together. 694	Sublimation, of dry ice 125, 126
Stability A relative term that describes	Strontium-90 706	Subshell, of atomic orbitals 139
the resistance to change. 96, 122–	Studying chemistry 5	Substance, base unit of 10–11
124	Study Sheets	Substances
Standard kilogram 11	abbreviated electron configuration	densities of common 48
Standard pressure 479	151–154	equation stoichiometry and
Standard temperature 479	assignment of oxidation numbers	414–421
Standard temperature and pressure (STP)	378	hydrophilic and hydrophobic 558
479	balancing chemical equations 303	solubilities of 554–555 uses for radioactive 707–710
gas stoichiometry and 479 gas stoichiometry for conditions	basic equation stoichiometry - con- verting mass of one substance	Substrate A molecule that an enzyme
other than 480–481	in a reaction to mass of another	causes to react. 666
Standing waves 132–134	418–419	Subtraction, rounding off and 45–47
Starch 650, 652	calculating empirical formulas 273	Sucrase, in digestion 664
Stars, element formation and 719	calculating molecular formulas 277	Sucrose, solubility in water 569
State, physical 301	calculations using unit analysis 54	Sugar 650–652
Stationary wave 133	classification of matter 174	rate of solution 566
Steam re-forming 442, 598	combustion reaction 384	taste of 345
Stearic acid	converting between mass of element	Sulfate ion, solubility of compounds
molecular structure of 640	and mass of compound contain-	with 317
solubility of 559	ing the element 270	Sulfur 85–86
Step-growth (or condensation) poly-	drawing Lewis structures from for-	combustion and 383
mer A polymer formed in a reaction	mulas 198–199	covalent bond formation 194
that releases small molecules, such as	electron configurations and orbital	ion formation 182–183
water. This category includes nylon	diagrams 149, 198	production 408
and polyester. 667	electronegativity, types of chemical	use and production 501
Sterno 187	bonds, and bond polarity 526	Sulfur dioxide
Steroid Compounds containing a four-	equation stoichiometry 418–419,	acid rain and 255
ring structure. 661–662	437, 483–484	air pollution and 499
Stirring, rate of solution and 565–567	equation stoichiometry problems	in combustion reactions 383
Stockings 666	437	as pollutant and removal 454
Stoichiometric ratio 422	identification of strong and weak	Sulfur hexafluoride, threshold limit
Stoichiometry. See Equation	acids and bases 344	value, or TLV 498
stoichiometry	limiting reactant problems 426	Sulfuric acid 254
Stomach	predicting molecular geometry 215	acid rain and 255
hydrochloric acid in 482	predicting precipitation reactions	in acrylamide synthesis 597
role in digestion 665	and writing precipitation equa-	forming name of 257
Stomach acid 482	tions 318	as oxyacid 250
Storage battery 392	rounding off numbers calculated us-	production 402
Strong acid An acid that donates its H ⁺	ing addition and subtraction 45	reaction with sodium hydroxide
ions to water in a reaction that goes	rounding off numbers calculated	352
completely to products. Such a com-	using multiplication and division	as strong acid 254, 340
pound produces close to one H ₃ O ⁺	41	uses 254
ion in solution for each acid molecule	using Dalton's Law of Partial Pres-	Sulfur trioxide, in acid rain 255
dissolved in water. 251, 253, 340	sures 488	Sun, nuclear fusion and 718
identifying 344	using the combined gas law equa-	Supercritical carbon dioxide
reactions of strong base with	tion 476	decaffeinating coffee and 491
349–353	using the ideal gas equation 471	spray paint and 490
Strong base A substance that generates	writing complete electron configura-	Supercritical fluid 490

Super glue 216	Tetrahedral The molecular shape that	planar) The geometric arrangement
Supernovas 719	keeps the negative charge of four	that keeps three electron groups as fai
Surface area, rate of solution and	electron groups as far apart as pos-	apart as possible. It leads to angles of
565–566	sible. This shape has angles of 109.5°	120° between the groups. 213
Sweet taste 345	between the atoms. 210	Trigonal pyramid The molecular ge-
Symbols	Tetrahedral molecules 210	ometry formed around an atom with
for elements 83	Tetramethylene glycol 279	three bonds and one lone pair. 212
for nuclides 692	Tetrapeptide 656	Trimethylamine 644
Synthesis gas 598	Tetraphosphorus decoxide, in furnace	2,2,4-Trimethylpentane 637
Synthesis reactions 382	method 261	Trinitrotoluene (TNT) 638-639
Synthetic polymers 666–671	Tetraphosphorus trisulfide 305	Triple bond A link between atoms that
TD.	Thalidomide 296, 649	results from the sharing of 6 electrons
T	Theoretical yield The calculated maxi-	It can be viewed as three 2 electron
Tanzanite 294	mum amount of product that can	covalent bonds. 192
Taste 345	form in a chemical reaction. 428	Triprotic acid An acid that can donate
Technical University of Munich 617	Thermometers 18–19	three hydrogen ions per molecule in a
Television waves 131	Thiocyanate 444	reaction. 250, 340
	Thionyl chloride, production and use	Tristearin 560
Tellurium (Te), bonding patterns of 199 Temperature A measure of the average	454	Tritium 92–93
internal kinetic energy of an object.	Thoburn, Steve 38	Trypsin 664
17–19, 129	Thortveitite 296	Tryptophan (Trp, W), molecular struc-
absolute zero 18	Threonine (Thr, T), molecular structure	ture of 655
base unit of 11	of 655	Tungsten (W), in light bulb filaments
	Threshold limit value, or TLV 498	472
boiling-point 520 Celsius scale 18	Time, base unit of 11	Tyrosine (Tyr, Y), molecular structure
	Tin(II) sulfide, melting point of 60	of 655
coldest 19	Tincture of iodine 532	\mathbf{U}
common scales 19	Tin isotopes 93–94	
in condensation 510	Titanium(IV) oxide	Ultraviolet radiation 131
critical 490	production 504	Umami taste 345
density and 47	production and use 457	Uncertainty 21
effect on rate of solution 568	Titanium (Ti) 98	in measurements 20–22
equilibrium constants and 608–609	production and use 411	significant figures and 39–47
equilibrium vapor pressure and	Titanium carbide 427	Unified mass unit. See Atomic mass uni
516–517	Titanium dioxide 608	Unit A defined quantity based on a
in evaporation 512–513	production and use 402	standard. 9–18, 1–3
Fahrenheit scale 18–19	Titration, Web site for 438	abbreviations 1
gases and 461	Tooth decay, acid-base reactions and 354	conversions among 34-60
Kelvin scale 18–19	Tooth enamel, composition of 354	of energy 127
measuring 18	Toothpaste, chemicals in 226	in international system of measure-
normal boiling-point 521	Torr, as unit of pressure 461	ment 10–12
pressure and 464	Trailing zeros, measurement uncertainty	length 14
range of 19	and 22	mass 16
rate of reaction and 592–594	Transition metals The elements in	the importance of putting into equa
rate of solution and 568	groups 3 through 12 (the "B" groups)	tions 473
standard 479	on the periodic table. 86	volume 15
volume and 465	as catalysts 596	Unit analysis A general technique for
Temperature conversions 58–60	in catalytic converters 385	doing unit conversions. 34–38, 132-
Terephthalic acid, in plyester formation	in periodic table 86	136, 142–146, 267–275, 414–418,
668	Transition state, in chemical reactions	422–426
Tertiary protein structure The overall	587	equation stoichiometry and 416
arrangement of atoms in a protein	Triacylglycerol 560–561	gas stoichiometry and 481
molecule. 657	Triglyceride A compound with three	Study Sheet 54–55
Testosterone 662	hydrocarbon groups attached to a	summary of 54–58
Tetraboron carbide, production and use	three carbon backbone by ester func-	Unit conversions 34–38, 132–136,
446, 447	tional groups. 560–561, 659–661	142–146, 267–271, 271–275,
Tetrachloroethene 421	Trigonal planar (often called triangular	414–418, 422–426

Value A number and unit that together

represent the result of a measurement

"something per something" 57	or calculation. 10	\mathbf{W}
common 54–58	Vanadium(V) oxide, in catalytic con-	Wächtershäuser, Günter 617
density and 49, 56, 477, 479–482,	verter 385	Water 172
527	Vapor A gas derived from a substance	acids and 248–249, 251–252,
English-metric 37–38, 56	that is liquid at normal temperatures	340–341
metric-metric 35–37, 56	and pressures. It is also often used to	ammonia and 341–342
percentage and 53, 57	describe gas that has recently come	attractions 308
Universal gas constant, R The constant	from a liquid. 510 Vaporization The conversion of a	bases and 341
in the ideal gas equation. 470	liquid to a gas. 79	boiling point of 18–19, 521
in gas stoichiometry 481–485 in ideal gas equation 470–475	Vapor pressure. See Equilibrium vapor	as compound 173
Universe	pressure	condensation of 510-511
hottest temperatures in 19	Vegetable oil 561	in condensation reactions 665
origin of elements in 718–719	Velocity	covalent bond formation 193
University of California, Berkeley 701	of gas particles 460	density of 48
University of Regensberg 617	kinetic energy and 121	dissolving sodium chloride in
Unpaired electrons 190	of particles in evaporation 511	310–311
in valence-bond model 188	Vinegar	evaporation of 511
Unsaturated solution A solution that	acetic acid in 250	hard 320
has less solute dissolved than is pre-	taste of 345	heavy 59
dicted by the solubility limit. 568	Vinyl chloride, in poly(vinyl chloride)	hydrogen bonds in 530
Unsaturated triglyceride A triglyceride	670	ionizing radiation and 706–707
that has one or more carbon-carbon	Visible fingerprints 517	liquid 308–309
double bonds. 659	Visible light 131	melting point of 18–19
Uranium 427	Vitamin C, aging and 376	mixing with ethanol 552–553
alpha emission 696	Vitamin E, aging and 376	molecular shape 307–308 in nylon formation 667
production 448	Volatile organic compounds (VOCs)	pH of 347
uranium-238 decay series 705	490 V I. 201	as polar molecule 308, 529
Uranium(IV) oxide 427	Voltage 391	producing hydrogen gas from
Uranium-234 716	Voltaic cell A system in which two half-reactions for a redox reaction	597–599
Uranium-235 716	are separated, allowing the electrons	in protein formation 656
enrichment 427	transferred in the reaction to be	rate of solution in 565–569
in fission reactors 716	passed between them through a wire.	solubility in 554–559
half-life 703	388–393	Water dissociation constant (K _w) The
Uranium-238	anode 389	equilibrium constant for the reaction:
in fission reactors 716	cathode 389	$H_2O(l) \rightleftharpoons H^+(aq) + OH^-(aq)$ 608
half-life 703	common examples 393	Water purification 420
nuclide symbol 693	electrode 389	Water solubility 316-317
radioactive decay series 705 Uranium-239	electrolyte 390	Water treatment 366
in nuclear reactors 716	primary battery 392	Wave
in nuclear fission 714	salt bridge 390	electrons as 134–141
Uranium hexafluoride 413, 427	secondary battery 392	for guitar strings 132
Urea 457	zinc-air batteries 393	radiant energy as 130–132
use and production 502, 630	Volume (V) 15–16	standing 132–133
300 mm pro massical 3 02, 00 0	density and 47	Waveform A representation of the
${f V}$	English-metric conversion factors	shape of a wave.
Valence-bond model 188–193	for 38	of electron 134
	of gases 461	of guitar strings 133
Valence electrons The electrons that are most important in the formation of	of ideal gas particles 461	Wavelength The distance in space over
chemical bonds. The highest energy s	measurement, graduated cylinder 21	which a wave completes one cycle of
and p electrons for an atom. 188		its repeated form. 130–131 Weak acid A substance that is incom-
Valine (Val, V), molecular structure of	number of gas particles and 467 pressure and 462–463	pletely ionized in water due to the
654	range of 16	reversibility of the reaction that forms
Value A number and unit that together	temperature and 465	hydronium ions H ₂ O ⁺ in water

temperature and 465

Volume unit, liter 12

hydronium ions, H_3O^+ , in water.

Weak acids yield significantly less

than one H ₃ O ⁺ ion in solution for	attractions 536
each acid molecule dissolved in water.	for resonance 209
251, 252, 340	for temperature effect on solid and
Weak base A substance that produces	<u>*</u>
fewer hydroxide ions in water solution	gas solubility 569, 573
than particles of the substance added.	for writing complete ionic and net
342–343	ionic equations 319
ammonia as 341–342	Weight A measure of the force of gravi-
identifying 344	tational attraction between an object
Weather balloon 478 Web site	and a significantly large object, such
	as the earth or the moon. 16
for acid-base titration 438 for acid nomenclature 257	
for animation of acid-base reaction	Weighted average A mass calculated
353	by multiplying the decimal fraction
for animation of a single-displace-	of each component in a sample by its
ment reaction 386	mass and adding the results of each
for animation of dissolving ethanol	multiplication together. 100
in water 553	Wine
for animation of element structure	pH of 347
98	sediment formation 555
for animation of precipitation reac-	
tion 316	Work What is done to move an object
for animation of solution of sodium chloride 310	against some sort of resistance. 120
for animation of strong and weak acids 254	X
for animation of the particle nature	X-ray crystallography 649
of matter 80	X-rays 131
for animation of water structure	Xenon (Xe), reactions 406
309	Xenon difluoride 443
for balancing redox equations 382,	
386	Y
for calculating element percentages	
271	Yield. See Actual yield, Theoretical yield,
for changing volume and gas reac- tions 613	and Percent yield
for combustion analysis 278	${f Z}$
for conversion between element	- 1 · · · · · · · · · · · · · · · · · ·
names and formulas 83	Zeros and significant figures 42
for different electron configurations 154	Zinc (Zn) 98
for enzyme mechanism 666	batteries and 388-391
for equilibrium calculations, includ-	reaction with copper sulfate
ing pH 609	386–387
for isotope notation 94	single-displacement reaction and
for gas stoichiometry shortcut 482	386–387
for how addition polymers are made	
669	voltaic cells and 388–390
for London forces and polar mol-	Zinc-air batteries 393
ecules 534	Zinc oxide
for mixtures and equation	in book preservation 355
stoichiometry 421	oxidation-reduction and 372-373
for polyatomic ions 238	in zinc-air batteries 393
for predicting molecular polarity	
529	Zinc phosphate 306

for predicting relative strengths of