GLOSSARY/INDEX

A	taste of 177	Alanine (Ala, A)
Abbreviated electron configuration, of	triprotic. See Triprotic acid	silk and 690
multi-electron atoms 433–436	types 162	structure of 678
Absolute zero Zero kelvins (0 K), the	weak 163–165	Alar 361
lowest possible temperature, equiva-	Acid-base reaction 180–188	Alcohol Compounds that contain a
lent to -273.15 °C. It is the point	strong acid with hydroxide base	hydrocarbon group with one or more
beyond which motion can no longer	181–185	-OH groups attached. 84, 663. See
be decreased. 18	uses 180	also Methanol, Ethanol, and 2-pro-
Accuracy How closely a measured	writing equations 183	panol
value approaches the true value of the	Acidic paper, preserving books with 187	hydrogen bonds and 555
property. 20	Acidic solution A solution with a sig-	Aldehyde A compound that has a hy-
Acetaldehyde, determining Lewis struc-	nificant concentration of hydronium	drogen atom or a hydrocarbon group
ture 464–465	ions, H_3O^+ . 160	connected to a -CHO group. 665
Acetamide 668	Acid rain 167	Aldol, molecular structure of 669
Acetate ion, solubility of compounds	pH and 178	Alka-Seltzer 526
with 141	Acrylamide 621	Alkaline earth metals Group 2 (or 2A)
Acetic acid 162–165, 664	Activated complex 611	on the periodic table; See also Beryl-
dissolved in water 164	Activation energy The minimum	lium, Magnesium, and Calcium 43
formulas 162	energy necessary for reactants to reach	ion charges of 97
freezing point of 162	the activated complex and proceed to	Alkali metals Group 1 (or 1A) on the
glacial 162	products. 612	periodic table; See also Lithium, So-
molecular structure of 162	Active site A specific section of the pro-	dium, Potassium, and Cesium 43
as organic acid 162	tein structure of an enzyme in which	ion charges of 96–97
production 528, 654	the substrate fits and reacts. 690	Alkane A hydrocarbon (a compound
solubility in water 593	Actual yield The amount of product	composed of carbon and hydrogen) in
taste of 160	that is actually obtained in a chemical	which all of the carbon-carbon bonds
uses 162, 654	reaction. 382	are single bonds. 661
as weak acid 163	Adams, Mike 674	Alkene A hydrocarbon that has one or
Acetone 666	Addition, rounding off for 299–300	more carbon-carbon double bonds.
boiling point of 546	Addition polymer A polymer that con-	662
evaporation of 536	tains all of the atoms of the original	Alkyne A hydrocarbon that has one or
use 567	reactant in its structure. This category	more carbon-carbon triple bonds.
vapor pressure of 540	includes polyethylene, polypropylene,	662
Acetylene 451, 662	and poly(vinyl chloride). 693–694	Alpha emission The process of releas-
molecular structure of 451	Adipic acid 351	ing an alpha particle by atoms that
water solubility of 580	Adults	have too many protons to be stable.
Acid. See also Arrhenius acid	effects of ionizing radiation on 730	720
binary. See Binary acid	fingerprints of 541	nuclear equations for 723–725
bleach and 188	Aerosol can 541	Alpha helix 680–681
Brønsted-Lowry 188–192	Agent Orange 364	Alpha particle The emission from ra-
conjugate acids and bases 189	Aging, oxidizing agents and 212	dioactive nuclides that is composed of
carboxylic acid. See Carboxylic acid	Agitation, rate of solution and 590–591	two protons and two neutrons in the
characteristics 160	Agricultural Research Service of North	form of a helium nucleus. 720
classification of strong or weak 166,	Carolina State University 266	effects on body 730–731
176–177	AIDS 673	penetration of the body 731
defined 188	Air 509–510	Alternate Synthetic Pathways Award 621
diprotic. See Diprotic acid	density of 302	Alternative Solvents/Reaction Conditions
identifying 176–177	gases in 510	Award 272
monoprotic. See Monoprotic acid	internal combustion engine and	Alum. See Aluminum sulfate
names and formulas of 168–170	492	Aluminum 44
oxyacid. See Oxyacid	in lungs 493	ion formation 49, 97
pH 178–179	Air bags 526	Aluminum bromide, production and use
polyprotic. See Polyprotic acid	Air pollution	235
in saliva 177	catalytic converters and 221	Aluminum chloride 108
strong 165	ozone and 266–267	Aluminum fluoride, production and use
Study Sheet, indentifying 176	volatile organic solvents and 514	401

Aluminum hydroxide, dissolving in acid	Amphoteric substance A substance	Arrhenius acid According to the
184	that can act as either a Bronsted-	Arrhenius theory, any substance that
Aluminum oxide 132	Lowry acid or a Bronsted-Lowry base,	generates hydronium ions, H ₃ O ⁺ ,
Aluminum sulfate	depending on the circumstances. 191	when added to water. 160–167. See
old books and 187	Amylase 688	also Acid
production and use 410	Amylopectin 676–677	binary acid 162
water purification 374	Amylose 676–677	compared to Brønsted/Lowry acids
Americium-241 and smoke detectors	Analogies, to electron behavior 414	188–192
735	Anastas, Paul T. 5	defined 160
Amide A compound with the general	Anderson, Carl 437	names and formulas for 168-170
formula RCONR, in which each R	Androstenedione 686, 687	organic (or carbon-based) acid 162
represents hydrogen atoms or hydro-	Aniline, production and use 399, 402	oxyacids 162
carbon groups. 668	Animal fat 585	reactions with bases 180-187
in digestion 689	Anion An ion formed from an atom	strong and weak 163–166
as peptide bond 680	that has gained one or more elec-	Arrhenius base A substance that
Amine A compound with the general	trons and thus has become negatively	produces hydroxide ions, OH ⁻ ,
formula R ₃ N, in which R represents	charged. 49	when added to water. 174–178. See
a hydrogen atom or a hydrocarbon	formation 95–96	also Base
group (and at least one R group being	in batteries 225–226	compared to Brønsted/Lowry bases
a hydrocarbon group). 667–668	in classifying types of compounds	188–192
1-Aminobutane 667	78	defined 173
Aminopeptidase 688	in ionic bond formation 75–76	reactions with acids 180–187
Amino acid The monomer that forms	monatomic 96	strong and weak 173–176
the protein polymers. They contain an	naming 98–99, 104–106	Arsenic (As)
amine functional group and a carbox-	polyatomic 101–103	bonding patterns of 452
ylic acid group separated by a carbon.	structure of ionic compounds 100	most common bonding pattern 455
678–679	writing formulas 107–108	Asparagine (Asn, N), structure of 679
	Anode The electrode at which oxida-	Asparagine (Asii, N), structure of 6/9 Aspartame 705, 711
in origin of life 640-642		÷
protein fomation and 680	tion occurs in a voltaic cell. It is the	Aspartic acid (Asp, D)
in silk 690	source of electrons and is the negative	in salt bridges 682
Ammonia 173–174	electrode. 225	structure of 679
covalent bond formation 451	Antacid 126, 506	Asphalt, London forces in 556–557
hydrogen bonds and 555	Antarctica, ozone hole over 271	Asymmetry, in polar molecules 552, 553
Lewis structure of 81	Anthropogenic sources, of methyl bro-	Atmosphere, layers 268
molecular geometry 469	mide 272	Atmosphere (atm), as unit of pressure
molecular shape of 87	Anti-electron (positron) 437	485
origin of life and 641	Antimatter 437	Atmospheric pressure 485
pH of 179	Antioxidant, aging and 212	boiling-point temperature and
production 504, 621	Antiparticle 437	545–546
uses 173, 570	Antiseptic, iodine as 556	Atom The smallest part of the element
weak base 173–174	Application, in scientific method 8–9	that retains the chemical characteris-
Ammonium carbonate, use 653	Aquamarine 362	tics of the element itself. 46–48
Ammonium chloride, crystal structure	Aqueous solution A solution in which	atomic numbers of 51
of 101	water is the solvent. 134	chemical bonds between 73–77
Ammonium ion	Arene (or aromatic compound) A com-	in chemical reactions 126–128
covalent bond formation 452	pound that contain the benzene ring.	counting by weighing 331–334
Lewis structure 101	662–663	electron 48
solubility of compounds with 141	Arginine (Arg, R), structure of 679	electron configurations and orbital
Ammonium nitrate, in cold packs 264	Argon	diagrams 424, 431, 456
Ammonium perchlorate, space shuttle	in air 510	excited and ground state 421
and 245	in incandescent light bulbs 496	as formula unit 339
Ammonium phosphate, fertilizers and	in neon lights 509	mass numbers of 51-52
213	Aromatic . See Arene A compound that	molar mass of 335-336
Ammonium sulfide, use 108	contain the benzene ring.	nuclear reactions of 720-724
Amount of substance, base unit of 10	Aromatic compounds. Compounds that	nuclear stability of 718
Amphere, as unit of measure 11	contain the benzene ring. See Arene	oxidation numbers of 213–220
Amphetamine 582	Arrhenius, Svante August 160	protons, neutrons, and electrons 47

radioactive decay of 720–724	Bacteria 236	into electrical energy using redox reac-
size of 47	tooth decay and 186	tions. 224-229. See also Voltaic cell
size of nucleus 47	Baking powder 73	defined 224, 225
structure of 46–50	Balance, electronic 23, 300	dry cell 226-227
Atomic mass The weighted average of	Balanced chemical equation	nickel-cadmium batteries 228
the masses of the naturally occurring	coefficient 127	rechargeable 228
isotopes of an element.	coefficients to conversion factors	zinc-air 229
calculations 336	369–370	Beef fat 584–585
defined 333	in equation stoichiometry 368–375	Bends, the 596
relative 333	Balancing chemical equations 128–133	Benitoite 362
	steps in 129	Bent geometry The molecular geom-
Atomic mass unit (u or amu) One-	Study Sheet 129	etry formed around an atom with two
twelfth the mass of an atom of	Ball-and-stick model A representation	bond groups and two lone pairs or
carbon-12. Carbon-12 is the isotope	of a molecule that uses balls for atoms	two bond groups and one lone pair.
of carbon that contains 6 protons,	and sticks for covalent bonds. 54	469
6 neutrons, and 6 electrons. 47,		
332–333	of acetic acid molecule 162	Benzedrine 582
Atomic number The number of pro-	for acetylene 471	Benzene 351
tons in an atom's nucleus. It estab-	for boron trifluoride 470	Berkelium (Bk) 725
lishes the element's identity. 51	for ethane 471	Beryllium (Be)
in nuclear equations 722–726	for methane 468	electron configuration and orbital
in nuclides 716–717	for organic molecules 660	diagram 426
Atomic orbitals	of ammonia 87	formation of 742
1s 416–418	of methane 87	Beta emission The conversion of a
2p 421	of water 88	neutron to a proton, which stays in
2s 419–420	Band of stability On a graph of the	the nucleus, and an electron, called a
3 <i>d</i> 422	numbers of neutrons versus protons	beta particle in this context, which is
electron cloud 418	in the nuclei of atoms, the portion	ejected from the atom. 720
electron spin and 426	that represents stable nuclides. 719	nuclear equations for 723–725
for first 10 elements 427	Barium ion, solubility of compounds	Beta particle A high-velocity electron
order of filling 425, 428–430	with 141	released from radioactive nuclides that
probability and 418	Barium sulfate 143	have too many neutrons. 720
relative energies 420	Barnes, Randy 687	effects on body 730-731
shapes 419	Base 173–177. See also Arrhenius base	penetration of the body 731
Atomic weight See also Atomic mass	Arrhenius 174	Beta sheet 680
333	Brønsted-Lowry 188–192	Big Bang 742
Attraction. See also Gravitational attrac-	carbonate 175	Binary acid Substances that have the
tion; Electrostatic attraction; Strong	classification of strong or weak	general formula of $HX(aq)$, where
force; Particle-particle attractions	176–177	X is one of the first four halogens:
-	conjugate 190	HF(aq), $HCl(aq)$, $HBr(aq)$, and
between gas particles 484 between liquid particles 534	defined 173	HI(<i>aq</i>). 162
intermolecular 547–557	identifying 175–176	formulas 168
	in acid-base reactions 180-188	naming 168
particle-particle attraction 547–562	pH 178–179	Binary covalent compound A com-
Aurum 41	strong 173	pound that consists of two nonmetal-
Automobile Exhaust 71	Study Sheet, indentifying 176	lic elements.
Average, weighted 331	weak 174–175	memorized names 90
Avogadro's Law Volume and the	Base units The seven units from which	names without prefixes 93
number of gas particles are directly	all other units in the SI system of	naming 91–92
proportional if the temperature and	measurement are derived. 10–11	prefixes used to name 91
pressure are constant. 491	table of 11	recognizing from formulas 91
Avogadro's number The number of	Basic solution A solution with a	recognizing from names 93
atoms in 12 g of carbon-12. To four	significant concentration of hydroxide	systematic names 90–92
significant figures, it is 6.022×10^{23} .	ions, OH ⁻ . 173	writing formulas 93–94
333–334	Battery A device that has two or more	Binary ionic compound An ionic
D	voltaic cells connected together. The	compound whose formula contains
В	term is also used to describe any	one symbol for a metal and one sym-
	cerm to also used to describe ally	one of moor for a metal and one sylli-

device that converts chemical energy

bol for a nonmetal. 104

Bacon, Roger 287

D. I	1.7/0	
Binding energy The amount of energy	and 740	Cadmium (Cd)
released when a nucleus is formed.	Boron trifluoride 453	in nickel-cadmium batteries 228
737 Pio carelyst 621	Bovine pancreatic trypsin inhibitor (BPTI) 680–682	nuclear plant control rods and 740 Caffeine 597
Biocatalyst 621 Biochemistry The chemistry of biologi-	Boyle's Law The pressure of a gas is in-	removal from coffee 515
cal systems. 674–687	versely proportional to the volume it	taste of 159
Biomolecule 674–687	occupies if the number of gas particles	Calamine 364
amino acids and protein 678–682	and the temperature are constant.	Calcium (Ca), ion formation 97
carbohydrate 674–677	486–487	Calcium carbide, production 402
how form 640–642	Brain, intoxicating liquids and 89	Calcium carbonate 126, 264, 616
steroid 685–686	Brain cancer, treatment for 741	acid rain and 167
triglycerides 683	Brandes, Jay A. 641	as antacid 506
Bismuth, in the creation of element 111	Breathing 493	formation in pipes of 144
52	Bristlecone pines and carbon-14 dating	in limestone caverns 204
Bitter taste 177	734	natural sources of 144
Blake, William 413	Bromide ion, solubility of compounds	oil production and 186
Bleach	with 141	precipitation reaction 137–140
dangerous combination with acid	Bromine (Br)	solubility in water 593 Calcium chloride 126
188	in halons 272	Calcium dihydrogen phosphate,
pH of 179	most common bonding pattern 455	production and use 407
Blocks, in periodic table 428–429 Blood	structure 55	Calcium hydrogen sulfite, production
pH of 179	use 570 Bromomethane, and threshold limit	and use 243
Blue litmus paper, detecting acids with	value, or TLV 522	Calcium nitrate 108, 137–138
180	Brønsted-Lowry acid A substance that	Calcium phosphide (or photophor),
Boiling The conversion of liquid to va-	donates protons, H ⁺ , in a Bronsted-	empirical formula for 348
por anywhere in the liquid rather than	Lowry acid-base reaction. See Acid,	Calorie (with an uppercase C), Cal
just at the top surface. 542–546	Brønsted-Lowry	The dietary calorie. In fact, a Calorie
defined 544	Brønsted-Lowry acid-base reaction A	is a kilocalorie or 4184 joules. 257
how bubbles form 542-544	chemical reaction in which a proton,	calorie (with a lowercase c), cal A
Boiling-point temperature The	H ⁺ , is transferred. See Acid-base reac-	common energy unit. Equivalent to
temperature at which a liquid boils.	tion, Brønsted-Lowry	4.184 joules. 257 Cancer, boron fusion and 741
It is also the temperature at which	Brønsted-Lowry base A substance that	Capsaicin 583
the equilibrium vapor pressure of the	accepts protons, H ⁺ , in a Bronsted-	Carbohydrate Sugar, starch, and
liquid becomes equal to the external	Lowry acid-base reaction. See Base,	cellulose. Also called saccharides.
pressure acting on the liquid. 544	Brønsted-Lowry	674–677
effect of external pressure 544–546 strengths of attractions and 546	Bubbles in boiling liquid 544	Carbon-13 733
Bond. See Chemical bond	in boiling liquid 544 how form in liquid 542–544	Carbon-14, radioactive decay of 733
Bond angle The angle formed by	in soft drinks 596	Carbon-14 dating The process of
straight lines (representing bonds)	Bunsen burner, hottest part of flame 314	determining the age of an artifact that
connecting the nuclei of three adja-	Bureau International des Poids et	contains material from formerly living
cent atoms. 86, 468	Mesures (BIPM) 11	plants or animals by analyzing the
Bond dipole A polar covalent bond,	Butadiene 524	ratio of carbon-14 to carbon-12 in the
which has an atom with a partial posi-	Butane, molecular structure of 82	object. 733–734 Carbonate ion 175
tive charge and an atom with a partial	1,4-Butanediol (BD) 354	reaction with acids 185
negative charge. 549	Butanoic acid	solubility of compounds with 141
Bond polarity, predicting 548–552	molecular structure of 583, 664	in weak bases 175
Books, preserving 187	solubility of 583	Carbonic acid 597
Boron (B)	2-Butanone 666	Carbon (C) 48
brain cancer treatment and 741	Butylated hydroxytoluene (BHT) 662	bonding pattern 82
covalent bonding pattern 454	Butyl ethyl ether 660	combustion and 219
covalent bond formation 453 electron configuration and orbital	Butyric acid 664	covalent bond formation 450-451
diagram 426	C	diamond as 47
· ·		electron configuration and orbital
nuclear power plant control rods	Cadaverine 667	diagram 426–427

in heavy-ion therapy 52	tion occurs in a voltaic cell. It is the	double bond 83
isotopes of 333	positive electrode. 225	energy and 253-254
medical use 52	Cation An ion formed from an atom	ionic bond 75–77
most common bonding pattern 455	that has lost one or more electrons	most common bonding patterns 83
in pig iron 509	and thus has become positively	nonpolar covalent 74
Carbon black 381	charged. 49	polar covalent 74
Carbon dioxide	formation of 95, 96–97	predicting bond type 77–79,
in automobile exhaust 71	monatomic	548–549
as dry ice 255	naming 99	summary 76
catalytic converter and 221	roles in body 100	triple bond 83
in combustion reactions 219	names 105	Chemical change. See Chemical reaction
decaffeinating coffee and 515	polyatomic 101	Chemical compound. See Compound
global warming and 384	produced by ionizing radiation 730	Chemical Elements. See Element
greenhouse gas 597	Celgene Corporation 673	Chemical engineering 609
Lewis structure of 83	Cellulose 674, 676–677	Chemical equation 126–133
polarity 552	molecular structure of 677	for acid-base reactions 183–187
in soft drinks 596	Celsius scale 18–19	balancing 128-133
solid to gas 576	Celsius to Fahrenheit conversion	polyatomic ions 129, 132
solubility in water 593	312–314	Study Sheet 129
spray painting and 514	Celsius to Kelvin conversion	chemical calculations and 367
supercritical 514	312–314	complete 140
Carbon dioxide torpedos 597	Cesium (Cs), electron configuration of	complete ionic 139
Carbon monoxide	434	heat and 128
catalytic converters and 221	Cesium-137 730	interpreting 126–128
covalent bond formation 453	Cesium chloride, crystal structure of	molecular 140
in hydrogen gas production 622	101–102	net ionic 140
incomplete combustion and 221	Chain-growth (or addition) poly-	physical states and 127
Lewis structure of 453	mers A polymer that contains all of	special conditions and 127–128
as pollutant 221	the atoms of the original reactant in	Chemical equilibrium. See Equilibrium
in synthesis gas 622	its structure. This category includes	Chemical formula A concise writ-
Carbon tetrachloride, use and produc-	polyethylene, polypropylene, and	ten description of the components
tion 526	poly(vinyl chloride). 693	of a chemical compound. It identi-
Carboxylic acid A compound that have	Chain reaction A process in which one	fies the elements in the compound
a hydrogen atom or a hydrocarbon	of the products of a reaction initiates	by their symbols and indicates the
group connected to a -COOH (or	another identical reaction. 739	relative number of atoms of each
-CO ₂ H) group. 162, 185, 664	Chapter Objectives 6	element with subscripts. 70–71. See
in acid-base reactions 185	Charge	also Chemical nomenclature
forming name of 169	in atoms 47	for acids 168–170
Carboxypeptidase, in digestion 688	in chemical bonds 76, 548–551	for binary covalent compounds 93
Carnegie Institution 641	in HCl molecules 74	in chemical equations 127
Carothers, W. H. 691	in hydrogen bonds 553	conversion factors from 342–345
Catalyst A substance that speeds a	of ions 95–98	for monatomic ions 98
chemical reaction without being	in London forces 556	of polyatomic ions 103
	in molecules 552–553	of polymers 691–694
permanently altered itself. 270, 618–621, 621	in water molecules 87	Chemical nomenclature
automobile catalytic converter 221	Charles I am The recovery of the six	binary acids 168
chlorine atoms as 271	Charles' Law The pressure of a gas is	binary covalent compounds 90–94
from chlorofluorocarbons 271	inversely proportional to the vol-	memorized Names 90
defined 270	ume it occupies if the number of	names without prefixes 93
equilibrium and 638–639	gas particles and the temperature are	naming 91–92
green chemistry and 621	constant. 489	prefixes used to name 91
homogeneous and heterogeneous	Chemical bond An attraction between	recognizing from formulas 91
620–621	atoms or ions in chemical com-	recognizing from names 93
nitrogen oxides as 270	pounds. Covalent bonds and ionic	systematic names 90–92
in producing hydrogen gas 622	bonds are examples. 73–77. See	ionic 104–108
Catalytic converter 221, 620–621	also Ionic bond; Covalent bond	oxyacids 169
Cathode The electrode at which reduc-	angles between 86–88, 468–474	summary 171–172

Chemical reaction The conversion of	diatomic molecules of 55	chemical equation. 127
one or more pure substances into one	electrolysis and 227	Coffee
or more different pure substances.	in ionic bonds 75	pH of 179
126	ion formation 95	removing caffeine 515
acid-base 180–189	Lewis structure of 80	Cold-start emissions, catalytic converters
chemical equations for 126–128	most common bonding pattern 455	and 221
collision theory for 610	product of the electrolysis of salt 39	Cold packs 264
combination 218	reaction with alkali metals 42	Collision theory A model for the
combustion 219–221	structure 55	process of chemical change. 610-
completion 164	threshold limit value, or TLV, and	616, 658–664, 674–680, 688–696,
converting to names 171–172	522	716–722
decomposition 219	use and production 525, 604	orientation 615
double-displacement 136	valence electrons 456	steps 610–612
endothermic 264–265	Chlorine-36 734	summary 615–616
energy and 263–265	Chlorine gas, molecules of 80	Combination (or synthesis) reaction
equilibrium constants for 626–631	Chlorobutane, formation of 382	The joining of two or more elements
exothermic 263–264	Chlorofluorcarbon, CFC Compound	or compounds into one product. 218
general process, collision theory	composed of just carbon, chlorine,	Combinatorial chemistry 673
610–616, 658–664, 674–680,	and fluorine. 270–272	Combined gas law equation 500
688–694, 690–696, 716–722	damage to ozone 270	Combustion analysis, empirical and
neutralization 180–187	polystyrene foam and 272	molecular formulas from 353
oxidation-reduction 208–211	substitutes 272	Combustion reaction Rapid oxida-
precipitation 137–143. See	1-Chloropropane, melting point of 313	tion accompanied by heat and usually
also Precipitation reaction	Chocolate, taste of 177	light. 219–220
predicting extent of 626–629 rate 616–620	Cholesterol, structure of 685–686 Chromite 384	incomplete 221
concentration effect 617–618	Chromium(III) oxide 108	Study Sheet 220
temperature effect 616–617	as catalyst 622	Complete (or molecular) equation A
reversible 163, 621–622	catalyst 022 catalytic converter and 221	chemical equation that includes uncharged formulas for all of the
reversible reaction and equilibrium	empirical formula of 346	reactants and products. The formulas
621–625	production and use 401, 408	include the spectator ions, if any. 140
single-displacement 222	Chromium (Cr), sources of 365	Complete combustion 219–220
synthesis 218	Chyme 688	Complete electron configuration
types of 218–224	Chymotrypsin, in digestion 688	430–432
Chemistry The structure and behavior	Citric acid 160	Complete ionic equation A chemi-
of matter. 4. See also Organic chem-	taste of 177	cal equation that describes the actual
istry; Biochemistry	Citrine 362	form for each substance in solution.
combinatorial 673	Clark, Desmond 733	For example, ionic compounds that
Green. See Green Chemistry	Classification of Matter 70–73, 126–	are dissolved in water are described as
nuclear 715–725	129, 160–163, 168–171, 178–183,	separate ions. 139
organic 657–672	188–191, 208–211, 213–216, 218–	Completion reaction 164
suggestions for studying 5	221, 224–227, 250–253, 263–269	Compound A substance that contains
Chemists 4	mixture 71	two or more elements, the atoms of
Children	pure substance 71	these elements always combining in
effects of ionizing radiation on 730	Study Sheet 72, 500, 507, 512, 550	the same whole-number ratio. 70
fingerprints of 541	Classifying compounds 78	binary covalent 90
Chili peppers 583	Cleaning with soap and detergent	binary ionic 104
Chloral hydrate 464	586–587	classification 78
Chloride ion 49	Clean Air Act of 1967 523	element versus 70
in sodium chloride 70	Clinton, Bill 5	ionic 78
solubility of compounds with 141	Coal, acid rain and 167	molar masses of 337-341
Chlorine (Cl)	Cobalt-60	molecular 78
as anion 75–76	cancer radiation treatment and 731	as pure substance 70–73
bleach and 188	food irradiation and 735	Computer-based tools that accompany
catalyst for ozone destruction	gamma ray emission and 722	this text 7
618–620	Coefficients The numbers in front	Concentration The number of particle
in chlorofluorocarbons 270	of chemical formulas in a balanced	per unit volume. For gases, it is usu-

ally described in terms of moles of gas Copper(II) oxide, in catalytic converter particles per liter of container. Substances in solution are described with Copper sulfate, reaction with zinc molarity (moles of solute per liter of 222-223 solution). 617 Corliss, Jack 641 disruption of equilibrium and 634 Corundum 359 equilibrium constants and 626-629 Counting by weighing 331–333 rate of reaction and 617-618 Covalent bonding patterns 454–455 **Condensation** The change from vapor **Covalent bond** A link between atoms to liquid. 534 that results from their sharing two dynamic equilibrium between electrons. 54 evaporation and 537-539 common bonding patterns 454 rate of 537 double bonds 83 Condensation (or step-growth) polyformation of 74 **mer** A polymer formed in a reaction most common bonding patterns that releases small molecules, such as 455 water. This category includes nylon polar or nonpolar 548 and polyester. 691 triple bond 83 Condensation reaction A chemical Creatine 687 reaction in which two substances Critical temperature 514 combine to form a larger molecule Cronenberg, David 7 with the release of a small molecule, Crude oil 556-557 such as water. 680 Crystals Solid particles whose compo-Condensed formula 659 nent atoms, ions, or molecules are Confirmation, in scientific method 9 arranged in an organized, repeating Conjugate acid The molecule or ion pattern. 139 that forms when one H⁺ ion is added Cubic centimeter 15 to a molecule or ion. 189 Cubic meter 12 Conjugate acid-base pair Two mol-Cyanide ion, determing Lewis structure ecules or ions that differ by one H+ 461-462 ion. 189-190 Cycle, in electromagnetic radiation 261 Conjugate base The molecule or ion Cyclopropane 713 that forms when one H⁺ ion is re-Cysteine (Cys, C) moved from a molecule or ion. 190 disulfide bonds between 682 Conservation of Energy, Law of 252 structure of 679 Control rods Rods containing substances such as cadmium or boron D (which are efficient neutron absorbd block, on periodic table 428-429 ers), used to regulate the rate of Dacron, as polyester 693 nuclear fission in a power plant and Dalton's Law of Partial Pressures The to stop the fission process if necessary. total pressure of a mixture of gases is 740 equal to the sum of the partial pres-Conversion factor A ratio that desures of each gas. 509-513, 547-551, scribes the relationship between two 621-625 units. 288-290 Dead Sea Scrolls 734 atomic mass as 335 Decaffeination 515 density as 303 Decimal place English-metric 292 calculators and 294 in equation stoichiometry 372 measurements and 293 formula mass as 340 rounding for addition and subtracfrom percentage 306 tion and 299 metric-metric 289 molecular mass as 337 **Decomposition reaction** The converand negative charges. sion of one compound into two or percentage 306 bond 549 Cooling, in evaporation 536-537 more simpler substances. 219

Denature To change the tertiary struc-

ture of a protein, causing it to lose its

Copper(II) ion, voltaic cells and 224-

226

natural function. 689 **Density, mass** Mass divided by volume. 301-305 calculating for gases 498 of common substances 302 definition 301 determination of 304-305 substance identification and 302 temperature and 301 units of 302 Designing Safer Chemicals Award 5 Detergent 587 cleaning with 586-587 pH and 179 Deuterium 50-51 in heavy water 313 DEZ treatment 187 Diamond 47 atoms in 48, 334 London forces in 558-559 **Diatomic** Composed of paired atoms. The diatomic elements are H_2 , N_2 , O₂, F₂, Cl₂, Br₂, and I₂. 55 Dichlorine monoxide, production and use 247 Dichloromethane, in decaffeinating coffee 515 Dietary calorie, Cal Equivalent to 4.184 kJ 257 Dietary Supplement and Health Act of 1994 687 Diethyl ether, structure of 665 Diethyl zinc (DEZ), in book preservation 187 Difference in electronegativity, in predicting bond type and polarity 548-549 **Digestion** The process of converting large molecules into small molecules that can move into the blood stream to be carried throughout the body. 688-690 Digestive enzymes 688–690 Digital readouts 23 Dihydrogen phosphate, as amphoteric Dimensional analysis. See Unit analysis Dimethyl ether, Lewis structure for 464 **Dipole** A molecule that contains an asymmetrical distribution of positive

induced 556-557

instantaneous 556-557

Dipole-dipole attraction The intermolecular attraction between the partial negative end of one polar molecule and the partial positive end of another polar molecule. 547 hydrogen bonds and 554 London forces and 556

Diprotic acid An acid that can donate two hydrogen ions per molecule in a reaction. 162

Dirac, Paul Adrien 437 Direct-contact method 515

Disaccharide Sugar molecule composed of two monosaccharide units. 676 digestion products 688

Dispersion forces. See London forces
Disproof, in scientific method 9
Disruption of equilibrium 634–640
catalysts and 638–639
concentrations and 634–637
Le Chatelier's Principle 638–640
Distance, between particles of gases 484

Disulfide bond A covalent bond between two sulfur atoms on cysteine amino acids in a protein structure.

Division, rounding off for 294 DNA (deoxyribonucleic acid) aging and 212 hydrogen bonding in 554

Distillation, of salt water 39

Dolomite rock, hard water and 144 Dopamine, Parkinson's disease and 8

Double-displacement reaction A chemical reaction that has the form:
AB + CD to AD + CB 136
acid-base 184

precipitation 136-139

Double-exchange reaction. See Double-displacement reaction

Double-replacement reaction. See Double-displacement reaction

Double bond A link between atoms that results from the sharing of four electrons. It can be viewed as two 2-electron covalent bonds. 83, 451 Dow Chemical Company 272

Dry cell battery, chemistry of 226–227 Dry ice 576

Dynamic equilibrium A system that has two equal and opposing rates of change, from state A to state B and from state B to state A. There are constant changes between state A and state B but no net change in the amount of components in either state. See Equilibrium

F

E.I. Du Pont de Nemours and Company 691

Earth, elemental composition of 743 Electric cars, zinc-air batteries in 229 Electric current, base unit of 11 Electric field, in electromagnetic radiation 261

Electric power plant, using nuclear fission 738–741

Electric spark, ozone created by 266

Electrode A electrical conductor placed in the half-cells of a voltaic cell. 225

Electrolysis The process by which a redox reaction is pushed in the nonspontaneous direction or the process of applying an external voltage to a voltaic cell, causing electrons to move from what would normally be the cell's cathode toward its anode. 227

Electrolyte The portion of a voltaic cell that allows ions to flow. 226 Electromagnetic radiation. *See* Radiant energy

Electron A negatively charged particle found outside the nucleus of an atom. 48, 414–418

in atoms 48–50 in batteries 224

as beta decay 720-721

in chemical bonds 74, 448–454 constructing Lewis structures and

456

electronegativity and 548

in ions 48-50

in isotopes 50-51

like guitar strings 414–416

in metallic elements 56

in multi-electron atoms 424

octets of 80

in oxidation-reduction reactions 208–211

particle interpretation of the wave character 418

as standing wave 416

as stariding wave 1

valence 79

waveform of 416

Electron-dot symbol A representation of an atom that consists of its elemental symbol surrounded by dots representing its valence electrons. 79–80, 83, 450

Electronegativity A measure of the electron attracting ability of an atom in a chemical bond. 548–551
Study Sheet 550

Electron capture In radioactive nuclides that have too few neutrons, the combination of an electron with a proton to form a neutron, which stays in the nucleus. 721

nuclear equations for 723–725

Electron cloud 48, 418

Electron configuration A description of the complete distribution of an element's electrons in atomic orbitals. 424, 426–427

abbreviated 433-436 Study Sheet 431, 456

Electron group geometry A description of the arrangement of all the electron groups around a central atom in a molecule or polyatomic ion, including the lone pairs. 469
Electron sharing, in chemical bonds 74
Electron spin 424, 426
Electron transfer, in chemical bond formation 75–76

Electron volt (eV) An energy unit equivalent to 1.6×10^{-19} joules. It is often used to describe the energy associated with nuclear changes. 737 Electroplating 227

Electrostatic force (or electromagnetic force) The force between electrically charged particles. 718

Element A substance that cannot be chemically converted into simpler substances; a substance in which all of the atoms have the same number of protons and therefore the same chemical characteristics. 38–57

artificial 52

atomic mass of 335

compound versus 70-71

diatomic 55

electronegativities of 548

electron configurations and orbital

diagrams 431, 456 isotopes of 50–51

list of common 41

1181 01 COIIIII1011 41

magic numbers for 737

making new elements 52

metallic 56-57

metalloids or semimetals 44

metals 43

molar masses of 335-336

names of 40, 41-42

naturally occurring isotopes 51

nonmetals 43

nuclear stability of 718–719 in ordinary substances 69

origin of 742

oxidation numbers of 213–218	291	tial pressure of vapor above a liquid in
particle interactions 558	Environment, chemistry and 4	a closed system with a dynamic equi-
periodic table of 42–46	Environmentally Benign Chemistry.	librium between the rate of evapora-
as pure substances 71	See Green Chemistry	_
solids, liquids, and gases 45	Environmental Protection Agency 5,	tion and the rate of condensation.
structure of 46–57	728	539–540
symbols for 41	Enzyme A naturally occurring catalyst.	in bubble formation 543–544
table of percent abundances in	618, 688–690	temperature and 540
Earth's crust, waters, and atmo-	digestive 688–690	Ester A compound with two hydrocar-
sphere 743	metallic cations in 100	bon groups surrounding an oxygen
Element 111, creation of 52	why specific 690	atom. 666–667
Element 114, creation of 52	Epictetus 288	in fingerprints 541
Emerald 362	Epinephrine 582	olestra as 684–685
Empirical formula A chemical formula	Equation. See Chemical equation,	Estradiol, structure of 686
that includes positive integers that de-	Nuclear equation; Ideal gas equation	Ethanamide 668
scribe the simplest ratio of the atoms	Equation stoichiometry Calculations	Ethane 82
of each element in a compound. 346	that make use of the quantitative	
calculating 346-350	relationships between the substances	solubility in hexane 581
converting to molecular formula	in a chemical reaction to convert	1,2-Ethanediol 663
350–353	the amount of one substance in the	Ethanoic acid 664
Shudy Sheet 348	chemical reaction to the amount of	Ethanol (or ethyl alcohol)
Enamel 186	a different substance in the reaction.	in combustion reactions 219
Endergonic changes Changes that	371–375	density of 301
absorb energy 253	ideal gases and 502–509	hydrogen bonds in 554-555
energy diagram 614–615	molarity and 388–392	as intoxicating liquid 89
Endothermic change A change that	Study Sheet 391	Lewis structure 84
leads a system to absorb heat energy	Equilibrium 621–622	mixing with water 576–577
from the surroundings. 265	disruption of 634–640	production of 628
Energy The capacity to do work.	dynamic 538–540	solubility in water 593
250–252	effect of catalyst 638–639	Ethene. See Ethylene
activation 612–614	effect on changing concentrations	Ether A compound with two hydrocar-
chemical bonds and 253–254	634–637	- · · · · · · · · · · · · · · · · · · ·
chemical changes and 263–265	gas solutions and 594–595	bon groups surrounding an oxygen
conservation of. See Law of Conser-	heterogeneous 630–631	atom. 665
vation of Energy	homogeneous 624	Ethylene (or ethene) 451
endergonic (or endogonic) changes	Le Chatelier's Principle and 638–	polyethylene formation and 693
253	640	Ethylene dibromide 272
of events 258	reversible reactions and 621–633	Ethylene glycol 663
exergonic (or exogonic) changes 254	saturated solution and 592–593	in polyester formation 692
exothermic 264	ski shop analogy for 625 Equilibrium constant A value that de-	Ethylene oxide, use and production 527
in food 258	scribes the extent to which reversible	Ethyl alcohol. See Ethanol
heat 259–260	reactions proceed toward products be-	Ethyl butanoate 667
kinetic. See Kinetic Energy, KE	fore reaching equilibrium. 626–629	Ethyne. See Acetylene
nuclear 737–742	calculating values for 627–628	Evaporation The conversion of a liquid
of photons 260–262	extent of reaction and 629	to a gas. 37, 535–536
potential 252–253	with heterogeneous equilibria	cooling and 536
radiant 260–262	630–632	_
storage in the body 674	table of 628	rate of. See Rate of evaporation
units of 257	temperature and 632–633	Exact numbers, significant figures and
water formation and 257	writing expressions for 626–627	295
Energy diagram 614–615	Equilibrium constant expression An	Examples, in this book 6
Energy level. See Principal energy level	expression showing the ratio of the	Excited state The condition of an atom
Engineering, chemical 609	concentrations of products to the con-	that has at least one of its electrons in
English-metric unit conversion factors	centrations of reactants for a reversible	orbitals that do not represent the low-
292, 369	reaction at equilibrium. 626	est possible potential energy. 421
English system, metric system versus 14,	Equilibrium vapor pressure The par-	Exercises, in this book 6

Fiblock, of elements 429 Fahrenheit scale 18–19 Fahrenheit to Celsius conversion 312–313 Family All the elements in a given column on the periodic table; also called group. 43 Fat 683 digestion products 688 Fertilizer ammonia and 621 nitric acid and 496 Feynman, Richard 418 15-minute rule 6, 7 Fingerprints 541 Fireworks calcium nitrate in 108 light emitted from 421 Fire extinguishers, sodium carbonate in 175 Fission Nuclear reaction that yields energy by splitting larger atoms to form more stable, smaller atoms. 738–739 Flame retardant, phosphates in 103 Intertoduct to Mattohn 22, 57, 653 Formic acid, molecular structure of 664 Formula See Chemical formula; Empirical formula; Empirical formula weighted average of the masses of the naturally occurring formula units of the substance. It is the sum of the atomic masses of the atoms in a formula unit. 340–341 calculations 341 Formula unit A group represented by a substance's chemical formula, that is, a group containing the kinds and numbers of atoms or ions listed in the chemical formula. 339 Fortrel® 693 Fractional charge, in chemical bonds 74 France, zinc-air batteries in 229 Free radicals Particles with unpaired electrons. 730 Fructose 674–675 Functional group A small section of an organic molecule that to a large extent determines the chemical and physical deprecentifics of the molecule (62) and the combined gas law equation 500–502 Study Sheet 500 using the ideal gas equation 494–499 Study Sheet 495 using the molar volume at STP 503 Charles' Law 489 concentration effect on reaction rates 617 Dalton's Law of Partial Pressures 509–513, 547–551 study sheet 502 Study Sheet 500 using the ideal gas equation 494–499 Study Sheet 502 study Sheet 507–508 using the combined gas law equation 500–502 Study Sheet 500 using the ideal gas equation 494–499 Study Sheet 502 Study Sheet 502 Study Sheet 502 Study Sheet 507–508			
emergy diagram 614 Exhanst 71 Exhanst 72 Food Tradiation 735 Food Irradiation 736 Food Irradiation 735 Food Irradi			· · · · · · · · · · · · · · · · · · ·
Exhaust \$71	- :		<u> -</u>
Exhates systems, catalytic converters and 221 Exothermic change A change that leads to heat energy being released from the system to the surroundings, 264 Expansion, of solids 35 Experimentation, in scientific method 8-9 External kinetic energy 259 Experimentation, in scientific method 8-9 External kinetic energy 259 Fiblock, of elements 429 Fahrenheit scale 18-19 Fahrenheit scale 18-19 Fahrenheit colesius conversion 312-313 Family All the clements in a given column on the periodic table; also called group, 43 Far 683 digestion products 688 Fertilizer ammonia and 621 nitric acid and 496 Feynman, Richard 418 15-minute rule 6, 7 Fingeprints 541 Fire extinguishers, sodium carbonate in 175 Fission Nuclear reaction that yields calcium nitrate in 108 light emitted from 421 Fire retardant, phosphates in 105 Flashurbes 522 Fluoraparite, tooth decay and 186 Fluorine (F) covalent bond formation 449-450 diatomic molecules of 55 electron configuration and orbital diagram 427 how made 365 most common bonding pattern 455 oxidation numbers and 214 formula unibers of actions the substance on 688-690 food, important substances in 674-685 food and Drug Administration (FDA) food irradiation 735 Formatic place wis structure 460-461 in herbicide formation 621 production and use 237, 653 formula unit so fit substance. It is formula semplia. See Chemical formula. Formula 479 as ubstance's chemical formula, that is, a group contraining the kinds and numbers of atoms or ions listed in the chemical formula. The substance of the substance. It is a group contraining the kinds and numbers of atoms or ions listed in the chemical formula. The substance of the material production of 494-499 Sunda have 27, 653 Formula unit A group represented by a substance's chemical formula. The substance is the atoms in a formula unit. 340-341 calcium in 149-409 Sunda have 27, 653 Formula unit A group repre			
digestion of 688-690 food, important substances in 674-685 food and Drug Administration (FDA) 515 Experimentation, in scientific method 8-9 External kinetic energy 259 External kinetic energy 259 External kinetic energy 259 Fartheritic scale 18-19 Fahrenheit to Celsius conversion 312-313 Family All the elements in a given column on the periodic table; also called group. 43 Family All the elements in a given column on the periodic table; also called group. 43 Fartilizer ammonia and 621 nitric acid and 496 Feynman, Richard 418 15-minute rule 6, 7 Finagerprints 541 Frieworks calcium nitrate in 108 light emitted from 421 Frie extriguishers, sodium carbonate in 175 Fission Nuclear reaction that yields energy by politring larger atoms to from more stable, smaller atoms, 738-739 Flacer both decay and 186 Fluorine (F) covalent bond formation 449-450 diatomic molecules of 55 electron configuration and orbital diagram 427 how made 365 hydrogen bonds and 553 most common bonding pattern 455 oxidation numbers and 214 production of 396-397 Galactose 674-675 Galactose 674-675 Galapagos Islands, global warming experiments at 385 rost common bonding pattern 455 oxidation numbers and 214 production of 396-397 Galactose for 4-675 Galactose 674-675 Galapagos Islands, global warming experiments at 385 resident substances in 674-685 food and Drug Administration (FDA) 515 food and Drug Administration 105 food and Drug Administration (FDA) 515 food and Drug Administration (FDA) 515 food and Drug Administration (FDA) 515 food and Drug Administration 105 formula suits of the substance, It is the sum on the tauternal procuring the formula. Fromula mass Th			
to heat energy being released from the system to the surroundings. 264 Expansion, of solids 35 Experimentation, in scientific method 8-9 External kinetic energy 259 Fartine and the contents are products of the masses of the atomic masses of the naturally occurring formula units of the substance. It is the sum of the atomic masses of the atomi	221	digestion of 688–690	
system to the surroundings. 264 Expension, of solids 35 Experimentation, in scientific method 8–9 Fetremal kinetic energy 259 Formal fixer of the control of the surroundings. 259 Formal fixer of the control of the surroundings. 259 Formal fixer of the control of the surroundings. 259 Formal fixer of the control of the surroundings. 259 Fahrenheit scale 18–19 Fahrenheit of Celsius conversion 312–313 Family All the elements in a given column on the periodic table; also called group. 43 Far 683 digestion products 688 Fertilizer ammonia and 621 nitric acid and 496 Feynman, Richard 418 15-minute rule 6, 7 Fignerprints 541 Fire works calcium nitrate in 108 light emitted from 421 Fire extinguishers, sodium carbonate in 175 Figner ratardant, phosphates in 103 Flashtubes 523 Floorapatite, toorh decay and 186 Fluoride ion, tooth decay and 186 Fluoride floor, tooth decay and 186 Fluoride floor, tooth decay and 186 Fluoride floor, tooth decay and 186 Fluoride ion, tooth decay and 186 Fluoride loor, tooth decay and 186 Fluorine (F) covalent bond formation 449–450 diatomic molecules of 55 electron configuration and orbital diagram 427 how made 365 hydrogen bonds and 553 most common bonding pattern 455 oxidation numbers and 214 production of 396–397 Falsalubase decay of 724 Gallaium-67, radioactive decay of 724 Galvarizing nails 132 Gallium-67, radioactive decay of 724 Galvarizing nails 132 Sorroula seed series from tate of the tentration 735 Formula seed formula; Empirical formula, that is tenture formula 37–38 Avogadro's Law 491 in book preservation 187 breathing and 493 calculations 341 breathing and 493 calculations 342 broatla			Gas The state in which a substance can
Experimentation, in scientific method 8-9 Fixeremal kinetic energy 259 Foresis chemistry 541 Formaldehyde 652, 665 Forensis chemistry 541 Formaldehyde 652, 665 Formia acid, molecular structure of 664 Formula 312-313 Family All the elements in a given column on the periodic table; also called group. 43 Far 683 digestion products 688 Fer dimmonia and 621 nitric acid and 496 Feynman, Richard 418 15-minute rule 6, 7 Fingerprints 541 Fireworks calcium nitrate in 108 light emitted from 421 Fire extinguishers, sodium carbonate in 175 Fission Nuclear reaction that yields energy by splitting larger atoms to form more stable, smaller atoms, 738–739 Flame retardant, phosphates in 103 Flashrubes 523 Flace tradant, phosphates in 103 Flace tradant of the cay and 186 Fluoride ion, tooth decay and		_	
Experimentation, in scientific method 8–9 External kinetic energy 259 Formal kinetic reaction 429 Fahrenheit scale 18–19 Fahrenheit ro Celsius conversion 312–313 Family All the elements in a given column on the periodic table; also called group. 43 Far 683 digestion products 688 Fertilizer ammonia and 621 nitric acid and 496 Feynman, Richard 418 15-minute rule 6, 7 Fingerprints 541 Fire vering uishers, sodium carbonate in 175 Firestorias Nuclear reaction that yields energy by splitting larger atoms to form more stable, smaller atoms. 738–739 Flame retardant, phosphates in 103 Flashtubes 523 Fluorapatite, tooth decay and 186 Fluoride fon, tooth decay and 186 Fluoride fon products of 55 electron configuration and orbital diagram 427 how made 365 laydrogen bonds and 553 most common bonding pattern 455 oxidation numbers and 214 production and use 237, 653 Formic acid, molecular structure 460–461 formula, See Chemical formula; Empirical formula; Molecular formula; Empirical formula; E			
External kinetic energy 259 Formaldehyde 652, 665 determing Lewis structure 460-461 in herbicide formation 621 production and use 237, 653 Formic acid, molecular structure of 664 Formula. See Chemical formula; Empirical formula is may be common on the periodic table; also called group. 43 Fact 683 digestion products 688 Fertilizer ammonia and 621 nitric acid and 496 Feynman, Richard 418 15-minute rule 6, 7 Fingerprints 541 Fireworks calcium nitrate in 108 light emitted from 421 Fire extinguishers, sodium carbonate in 175 Fission Nuclear reaction that yields energy by splitting larger atoms to form more stable, smaller atoms, 738-739 Flame retardant, phosphates in 103 Flashrubes 523 Flerov Laboratory of Nuclear Reactions 52 Covalent bond formation 449-450 diatomic molecules of 55 determon configuration and orbital diagram 427 how made 365 most common bonding pattern 455 Gallactose 674-675 Gallapagos Islands, global warming experiments at 385 most common bonding pattern 455 Gallalto Gallisi 9 Gallaun-67, radioactive decay of 724 Galvanizing nails 132 Gamma aminobutanoic acid, gamma more stable, great man 214 production of 396-397 Formala chick formation 462 formula articuture of 664 Formula. See Chemical formula; Empirical formula; Empirical, Molecular formula; Empirical formula; Empir			
Formal kinetic energy 259 Formal delehyde 652, 665 determing Lewis structure 460–461 in herbicide formation 621 production and use 237, 653 Formic acid, molecular structure of 664 Formula, See Chemical formula; Empirical formula; Empirical formula units of the substance. It is the sum of the atomic masses of the atomic masses of the atomic masses of the atomic masses of the atoms in a formula unit of the substance. It is the sum of the atomic masses of the atoms in a formula unit of the substance. It is the sum of the atomic masses of the atoms in a formula unit of the substance. It is the sum of the atomic masses of the atoms in a formula unit of the substance. It is the sum of the atomic masses of the atoms in a formula unit of the substance. It is the sum of the atomic masses of the atoms in a formula unit of the substance. It is the sum of the atomic masses of the atoms in a formula unit of the substance. It is the sum of the atomic masses of the atoms in a formula unit of the substance. It is the sum of the atomic masses of the atoms in a formula unit of the substance. It is the sum of the atomic masses of the atoms in a formula unit of the substance. It is the sum of the atomic masses of the atoms in a formula unit of the substance. It is the sum of the atoms in a formula unit of the substance. It is the sum of the atoms in a formula unit of the substance. It is the sum of the atoms in a formula unit of the substance. It is the sum of the atoms in a formula unit of the substance. It is the sum of the atoms in a formula unit of the substance. It is the sum of the atoms in a formula that group occurring formula unit of the substance. It is the sum of the atoms in a formula that group occurring formula unit of the substance. It is the sum of the atoms in a formula that group occurring formula unit of the substance. It is the atoms in a formula that group occurring			<u> </u>
determing Lewis structure 460-461 in herbicide formation 621 production and use 237, 653 Family All the elements in a given column on the periodic table; also called group. 43 Fat 683 digestion products 688 Fertilizer ammonia and 621 nitric acid and 496 Feynman, Richard 418 15-minute rule 6, 7 Fingerprints 541 Fire extinguishers, sodium carbonate in 175 Fission Nuclear reaction that yields energy by splitting larger atoms to form more stable, smaller atoms, 738–739 Flame retardant, phosphates in 103 Flashutbes 523 Flerov Laboratory of Nuclear Reactions 52 Fluorine (F) covalent bond formation 449–450 diatomic molecules of 55 electron configuration and orbital diagram 427 how made 365 Bydrogen bonds and 553 most common bonding pattern 455 Gallactose 674–675 Galapagos Islands, global warming experiments at 385 most common bonding pattern 455 Gallalles Gallite 9 Formula. See Chemical formula Empirical formula with cell substance. It is the substance. It is the sum of the atomic masses of the atomis masses of the atoms in a formula unit. 340–341 calculations 341 Formula units of the substance. It is the sum of the atomic masses of the atomis masses of the atomis masses of the atomis in a formula, that is, a group containing the kinds and numbers of atoms or ions listed in the chemical formula, that is, a group containing the kinds and numbers of atoms or ions listed in the chemical formula, that is, a group containing the kinds and numbers of atoms or ions listed in the chemical formula, that is, a group containing the kinds and numbers of atoms or ions listed in the chemical formula, that is, a group containing the kinds and numbers of atoms or ions listed in the chemical formula, that is, a group containing the kinds and numbers of atoms or ions listed in the chemical formula, that is, a group containing the kinds and numbers of atoms or ions listed in the chemical formula, that is, a group containing the kinds and atoms to make larger, in chemical bonds 74 France, zine-air batteries in 229 Fret adicals Particles		·	-
in herbicide formation 621 production and use 237, 653 Fathernheit scale 18–19 Fahrenheit to Celsius conversion 312–313 Family All the elements in a given column on the periodic table; also called group. 43 Family All the elements in a given column on the periodic table; also called group. 43 Fert 683 digestion products 688 Fertilizer ammonia and 621 nitric acid and 496 Feynman, Richard 418 15-minute rule 6, 7 Fingerprints 541 Fireworks calcium nitrate in 108 light emitted from 421 Fire extinguishers, sodium carbonate in 175 Fission Nuclear reaction that yields energy by splitting larger atoms to form more stable, smaller atoms. 738–739 Flame retardant, phosphates in 103 Flashrubes 523 Fletrov Laboratory of Nuclear Reactions 52 Fluorine (F) covalent bond formation 449–450 diatomic molecules of 55 diatomic molecules of 55 electron configuration and orbital diagram 427 how made 365 hydrogen bonds and 553 most common bonding partern 455 oxidation numbers and 214 production of 396–397 in herbicide formation 237, 653 Formica acid, molecular structure of 664 Formula, See Chemical formula, Empirical formula, Empirical formula, Empirical formula units of the usbastance. It is the sum of the atomic masses of the anturally occurring formula units of the substance. It is the sum of the atomic masses of the anturally occurring formula units of the substance. It is the sum of the atomic masses of the anturally occurring formula units of the substance. It is the sum of the atomic masses of the anturally occurring formula units of the substance. It is the sum of the atomic masses of the anturally occurring formula units of the substance. It is the sum of the atomic masses of the anturally occurring formula units of the units of the substance. It is the sum of the atomic masses of the anturally occurring formula units of the substance. It is the sum of the atomic masses of the anturally occurring formula units of the substance. It is the sum of the atomic masses of the anturally occurring formula units of the substance. It is	External kinetic energy 239	· · · · · · · · · · · · · · · · · · ·	
Formula (acid, molecular structure of 664 Formula, See Chemical formula; Empiric acid, molecular structure of 664 Formula, See Chemical formula; Empiric acid formula; Empiric acid formula; Molecular formula formula mass. The weighted average of the masses of the naturally occurring formula and 621 mitric acid and 496 formula, and a formula units of the substance. It is the sum of the atomic masses of the anturally occurring formula and 340–341 calculations 341 Formula unit A group represented by a substance's chemical formula, that is, a group containing the kinds and numbers of atoms or ions listed in the chemical formula, 339 Fractional charge, in chemical bonds 74 France, zinc-air batteries in 229 Free radicals Particles with unpaired electrons. 730 Flashtubes 523 Fleuro taboratory of Nuclear Reactions 52 Fluorapatite, tooth decay and 186 Fluorine (F) covalent bond formation 449–450 diatomic molecules of 55 electron configuration and orbital diagram 427 Charles Law 489 France, zinc-air batteries in 229 Free radicals Particles with unpaired electrons. 730 Fructional group A small section of an organic molecule that to a large extent determines the chemical and physical characteristics of the molecule. 662 Furnace method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 Furnace method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 Galactose 674–675 Galapagos Islands, global warming experiments at 385 Galileo Galilei 9 Gallieo Galilei 9 Gallium-67, radioactive decay of 724 Galvanizing nails 132 Garman aminobutanoic acid, gamma	F	-	
Farbrenheir scale 18–19 Farbrenheir scale 18 Farbrenheir scale 18–19 Farbrenheir scale 18 Farbrenheir scale 19 Farbrenheir scale 19 Farbrenheir scale 19 Farbrenheir scale abort scale 19 Farbrenheir scale 19 Farbrenhe			*
Farherheit to Celsius conversion 312–313 Family All the elements in a given column on the periodic table; also called group. 43 Fat 683 digestion products 688 Fertilizer ammonia and 621 nitric acid and 496 Feynman, Richard 418 15-minute rule 6, 7 Fingerprints 541 Fireworks calcium nitrate in 108 light emitted from 421 Fire extinguishers, sodium carbonate in 175 Fission Nuclear reaction that yields energy by splitting larger atoms to form more stable, smaller atoms. 738–739 Flame retardant, phosphates in 103 Flashtubes 523 Fluorapatite, tooth decay and 186 Fluorine (F) covalent bond formation 449–450 diatomic molecules of 55 lectron configuration and orbital diagram 427 how made 365 hydrogen bonds and 553 most common bonding pattern 455 oxidation numbers and 214 production of 396–397 Formula, See Chemical formula; Molecular formula Formula mass. The weighted average of the masses of the naturally occurring formula units of the substance. It is the sum of the atomic masses of the naturally occurring formula units 340–341 calculations 341 Formula units 340–341 calculations 341 Formula units 340–341 calculations 341 Formula unit A group represented by a substance's chemical formula, that is, a group containing the kinds and numbers of atoms or ions listed in the chemical formula. 339 Fortrel® 693 Fractional charge, in chemical bonds 74 France, zinc-air barteries in 229 Free radicals Particles with unpaired electrons. 730 Frunctional group A small section of an organic molecule that to a large extent determines the chemical and physical characteristics of the molecule. 662 Functional group A small section of an organic molecule that to a large extent determines the chemical and physical characteristics of the molecule. 662 Furnace method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 Galactose 674–675 Galact	·	÷	
Family All the elements in a given column on the periodic table; also called group. 43 feat 683 digestion products 688 Fertilizer ammonia and 621 mitric acid and 496 Feynman, Richard 418 15-minute rule 6, 7 Fingerprints 541 Fireworks calcium nitrate in 108 light emitted from 421 Fire extinguishers, sodium carbonate in 175 Fission Nuclear reaction that yields energy by splitting larger atoms to form more stable, smaller atoms, 738–739 Flame retardant, phosphates in 103 Fletrov Laboratory of Nuclear Reactions 52 Fluoriapatite, tooth decay and 186 Fluorine (F) Covalent bond formation 449–450 diatomic molecules of 55 electron configuration and orbital diagram 427 how made 365 hydrogen bonds and 553 most common bonding pattern 455 oxidation numbers and 214 production of 396–397 falle formula, Molecular formula the weighted average of the masses of the atoms in a given tool- the masses of the naturally occurring formula units of the substance. It is the sum of the atomic masses of the atomic masses of the atomic and spous passes of the atomic masses of the atomic masse			÷
Formula mass The weighted average of the masses of the naturally occurring formula units of the substance. It is the sum of the atomic masses of the atoms in a formula unit. 340–341 calculations 341 Formula unit A group represented by a substance is is, a group containing the kinds and numbers of atoms or ions listed in the chemical formula. 339 Firecovids calcium nitrate in 108 light emitted from 421 Fire extinguishers, sodium carbonate in 175 Fission Nuclear reaction that yields energy by splitting larger atoms to form more stable, smaller atoms. 738–739 Flame retardant, phosphates in 103 Flashtubes 523 Fluorapatite, tooth decay and 186 Fluorine (F) covalent bond formation 449–450 diatomic molecules of 55 electron configuration and orbital diagram 427 how made 365 hydrogen bonds and 553 most common bonding pattern 455 oxidation numbers and 214 production of 396–397 Formula mass The weighted average of the masses of the naturally occurring formula units of the substance. It is the sum of the atomic masses of the atoms in a formula unit. 340–341 calculations 341 Formula unit. 340–341 calculations 341 Formula unit. 4 group represented by a substance to is the sum of the atomic masses of the atoms in a formula unit. 340–341 calculations 341 Formu			•
umn on the periodic table; also called group. 43 Fat 683 digestion products 688 Fertilizer ammonia and 621 nitric acid and 496 Feynman, Richard 418 15-minute rule 6, 7 Fingerprints 541 Fireworks calcium nitrate in 108 light emitted from 421 Fire extinguishers, sodium carbonate in 175 Fission Nuclear reaction that yields energy by splitting larger atoms to form more stable, smaller atoms. 738–739 Flame retardant, phosphates in 103 Flashtubes 523 Flerov Laboratory of Nuclear Reactions 52 Fluorine (F) covalent bond formation 449–450 diatomic molecules of 55 electron configuration and orbital diagram 427 how made 365 hydrogen bonds and 553 most common bonding pattern 455 oxidation numbers and 214 production of 396–397 men the masses of the naturally occurring formula units 340–341 calculations 341 Formula unit. A group represented by a substance. It is the sum of the atomic masses of the naturally occurring formula units. 340–341 calculations 341 Formula unit. A group represented by a substance's chemical formula, that is, a group containing the kinds and numbers of atoms or ions listed in the chemical formula. 339 Fractional charge, in chemical bonds 74 France, zinc-air batteries in 229 Free radicals Particles with unpaired electrons. 730 Fructos 674–675 Functional group A small section of an organic molecule that to a large extent determines the chemical and physical characteristics of the molecule. 662 Functional 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 G G G G G G Galactose 674–675 electron configuration and orbital diagram 427 how made 365 hydrogen bonds and 553 most common bonding pattern 455 oxidation numbers and 214 production of 396–397 Galactose 674–675 Formula unit. 340–341 calculations 341 Formula unit. 340–341 calculations 341 Formula unit. 340–341 calculations 341 Formula uni			
formula units of the substance. It is the sum of the atomic masses of th	· · · · · · · · · · · · · · · · · · ·		
the sum of the atomic masses of the atoms in a formula unit. 340–341 calculations 341 Formula unit. 340–341 calculations 341 Formula unit. A group represented by a substance's chemical formula, that is, a group containing the kinds and numbers of atoms or ions listed in the chemical formula. 339 Fortel® 693 Fortel® 694 Fortel® 695 Fortel® 695 Fortel® 696 Fort			•
digestion products 688 Fertilizer ammonia and 621 nitric acid and 496 Feynman, Richard 418 15-minute rule 6, 7 Fingerprints 541 Fireworks calcium nitrate in 108 light emitted from 421 Fire extinguishers, sodium carbonate in 175 Fission Nuclear reaction that yields energy by splitting larger atoms to form more stable, smaller atoms, 738—739 Flame retardant, phosphates in 103 Flashtubes 523 Fleuroria (Fluorine (F) covalent bond formation 449—450 diatomic molecules of 55 electron configuration and orbital diagram 427 how made 365 hydrogen bonds and 553 most common bonding pattern 455 oxidation numbers and 214 production of 396–397 atoms in a formula unit. 340–341 calculations 341 chemical formula, that is, a group containing the kinds and numbers of atoms or ions listed in the chemical bonds 74 fractional charge, in chemical bonds 74 france, zinc-air batteries in 229 free radicals Particles with unpaired electrons. 730 fructional group A small section of an organic molecule that to a large extent determines the chemical and physical characteristics of the molecule. 662 furnace method 368 fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 G G Galactose 674–675 Galapagos Islands, global warming experiments at 385 hydrogen bonds and 553 most common bonding pattern 455 oxidation numbers and 214 prod	-	the sum of the atomic masses of the	
calculations 341 Formula unit A group represented by a substance's chemical formula, that is, a group containing the kinds and numbers of atoms or ions listed in the chemical formula. 339 Fireworks calcium nitrate in 108 light emitted from 421 Fire extinguishers, sodium carbonate in 175 Fission Nuclear reaction that yields energy by splitting larger atoms to form more stable, smaller atoms. 738–739 Flame retardant, phosphates in 103 Flashtubes 523 Flerov Laboratory of Nuclear Reactions 52 Fluorine (F) covalent bond formation 449–450 diatomic molecules of 55 electron configuration and orbital diagram 427 how made 365 hydrogen bonds and 553 most common bonding pattern 455 oxidation numbers and 214 production of 396–397 calculations 341 Formula unit A group represented by a substance's chemical formula, that is, a group containing the kinds and numbers of atoms or ions listed in the chemical bonds 74 Fractional charge, in chemical bonds 74 France, zinc-air batteries in 229 Free radicals Particles with unpaired electrons. 730 Fructions 674–675 Functional group A small section of an organic molecule that to a large extent determines the chemical and physical characteristics of the molecule. 662 Furnace method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 Galactose 674–675 Galactose 674–675 Galactose 674–675 Galapagos Islands, global warming experiments at 385 Galileo Galliei 9 Galvanizing nails 132 group containing the kinds and numbers of atoms or ions listed in the chemical bonds 74 Fractional formula, 339 Concentration effect on reaction rates 617 Dalton's Law of Partial Pressures 509–513, 547–551 study sheet 512 densites of 302 equilibrium constants and 626–627 expansion 575 Gay-Lussac's Law 488 greenhouse gases 384–385 heterogeneous equilibria and 630–632 ideal 485 ideal gas calculations 494–502 instrument-carrying balloons and 493 internal combustion engine and 492 Fractional formula, 339 Fractional formula, 339 Fractional		atoms in a formula unit. 340-341	
ammonia and 621 intric acid and 496 a substance's chemical formula, that is, a group containing the kinds and numbers of atoms or ions listed in the chemical formula. 339 Fortrel® 693 Fortrel® 694 Fortrel® 693 For	2		
a substance's chemical formula, that is, a group containing the kinds and numbers of atoms or ions listed in the chemical formula. 339 Firegerprints 541 Fireworks Calcium nitrate in 108 Ight emitted from 421 Fire extinguishers, sodium carbonate in 175 Fission Nuclear reaction that yields energy by splitting larger atoms to form more stable, smaller atoms. 738–739 Flame retardant, phosphates in 103 Flashtubes 523 Flerov Laboratory of Nuclear Reactions 52 Fluorapatite, tooth decay and 186 Fluoriape ion, tooth decay and 186 Fluorine (F) Covalent bond formation 449–450 diatomic molecules of 55 electron configuration and orbital diagram 427 how made 365 hydrogen bonds and 553 most common bonding pattern 455 oxidation numbers and 214 production of 396–397 a substance's chemical formula, that is, a group containing the kinds and numbers of atoms or ions listed in the chemical bonds 74 Farcional charge, in chemical bonds 74 Fractional charge, in chemical bond		Formula unit A group represented by	
is, a group containing the kinds and numbers of atoms or ions listed in the chemical formula. 339 Firegerprints 541 Fireworks calcium nitrate in 108 light emitted from 421 Fire extinguishers, sodium carbonate in 175 Fission Nuclear reaction that yields energy by splitting larger atoms to form more stable, smaller atoms. 738–739 Flame retardant, phosphates in 103 Flashtubes 523 Flerov Laboratory of Nuclear Reactions 52 Fluoriapatite, tooth decay and 186 Fluoriapatite, tooth decay and 186 Fluoriale ion, tooth decay and 186 Fluoriale ion, tooth decay and 186 Fluorine (F) covalent bond formation 449–450 diatomic molecules of 55 electron configuration and orbital diagram 427 how made 365 hydrogen bonds and 553 most common bonding pattern 455 most common bonding pattern 455 oxidation numbers of atoms or ions listed in the chemical formula. 339 Fortrel® 693 Fractional charge, in chemical bonds 74 France, zinc-air batteries in 229 Free radicals Particles with unpaired electrons. 730 Fructose 674–675 Functional group A small section of an organic molecule that to a large extent determines the chemical and physical characteristics of the molecule. 662 Furnace method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 Galactose 674–675 Galactose 674–675 Galactose 674–675 Galactose 674–675 Galactose 674–675 Galapagos Islands, global warming experiments at 385 hydrogen bonds and 553 most common bonding pattern 455 Oxidation numbers and 214 Galvanizing nails 132 Fortrel® 693 Fractional charge, in chemical bonds 74 France, zinc-air batteries in 229 Free radicals Particles with unpaired electrons. 730 Fructose 674–675 Functional group A small section of an organic molecule that to a large extent of an organic molecule. 662 Furnace method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 Ideal 485 ideal gas calculations 494–502 instrument-carrying balloons and 4992 liquids changing from and int		a substance's chemical formula, that	
15-minute rule 6, 7 Fingerprints 541 Fireworks calcium nitrate in 108 light emitted from 421 Fire extinguishers, sodium carbonate in 175 Fission Nuclear reaction that yields energy by splitting larger atoms to form more stable, smaller atoms. 738–739 Flame retardant, phosphates in 103 Flashtubes 523 Flerov Laboratory of Nuclear Reactions 52 Fluorapatite, tooth decay and 186 Fluorine (F) covalent bond formation 449–450 diatomic molecules of 55 electron configuration and orbital diagram 427 how made 365 hydrogen bonds and 553 most common bonding pattern 455 oxidation numbers and 214 production of 396–397 numbers of atoms or ions listed in the chemical formula. 339 fchemical formula. 339 fractional charge, in chemical bonds 74 France, zinc-air batteries in 229 Free radicals Particles with unpaired electrons. 730 Fructose 674–675 Functional group A small section of an organic molecule that to a large extent determines the chemical and physical characteristics of the molecule. 662 Furnace method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 G G G G Galactose 674–675 Galapagos Islands, global warming experiments at 385 partial pressure of 509–513, 595 particle collisions 484 pressure 485 pressure and industrial safety 501–502 production of 396–397 Gamma aminobutanoic acid, gamma		is, a group containing the kinds and	
Fingerprints 541 Fireworks	·	numbers of atoms or ions listed in the	
Fortrel 693 Fractional charge, in chemical bonds 74 Ight emitted from 421 Fire extinguishers, sodium carbonate in 175 Fission Nuclear reaction that yields energy by splitting larger atoms to form more stable, smaller atoms. 738–739 Flame retardant, phosphates in 103 Flashtubes 523 Flerov Laboratory of Nuclear Reactions 52 Fluorapatite, tooth decay and 186 Fluoride ion, tooth decay and 186 Fluorine (F) Covalent bond formation 449–450 diatomic molecules of 55 electron configuration and orbital diagram 427 how made 365 hydrogen bonds and 553 most common bonding pattern 455 oxidation numbers and 214 production of 396–397 Fortrel 693 Fractional charge, in chemical bonds 74 France, zinc-air batteries in 229 Free radicals Particles with unpaired electrons. 730 Fructose 674–675 Functional group A small section of an organic molecule that to a large extent determines the chemical and physical characteristics of the molecule. 662 Furnace method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 Galactose 674–675 Galactose 674–675 Tortel observed the trous a large extent determines the chemical bonds and 485 Metrorgenous equilibrium constants and 626–627 Gay-Lussac's Law 488 greenhouse gases 384–385 heterogeneous equilibria and 630–632 ideal 485 ideal 486 Functional g			•
calcium nitrate in 108 light emitted from 421 France, zinc-air batteries in 229 Free radicals Particles with unpaired electrons. 730 Frission Nuclear reaction that yields energy by splitting larger atoms to form more stable, smaller atoms. 738–739 Flame retardant, phosphates in 103 Flashtubes 523 Flerov Laboratory of Nuclear Reactions 52 Fluoriapatite, tooth decay and 186 Fluorine (F) Covalent bond formation 449–450 diatomic molecules of 55 electron configuration and orbital diagram 427 how made 365 hydrogen bonds and 553 most common bonding pattern 455 oxidation numbers and 214 production of 396–397 Fractional charge, in chemical bonds 74 France, zinc-air batteries in 229 Free radicals Particles with unpaired electrons. 730 Fractional charge, in chemical bonds 74 France, zinc-air batteries in 229 Free radicals Particles with unpaired electrons. 730 Fructose 674–675 Functional group A small section of an organic molecule that to a large extent determines the chemical and physical characteristics of the molecule. 662 Furnace method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 Galactose 674–675 Galactose 674–675 Galactose 674–675 Galapagos Islands, global warming experiments at 385 particles with unpaired electrons. 730 Gale alore electrons. 730 Fructose 674–675 Functional group A small section of an organic molecule. 662 Instrument-carrying balloons and 493 internal combustions 494–502 instrument-carrying balloons and 492 liquids changing from and into 534–536 model 484 molar volume 503 noble 43 partial pressure of 509–513, 595 particles with unpaired electrons. 730 Galleo Gallei 9 Fracticals Particles with unpaired electrons of an organic molecule that to a large extent determines the chemical and physical characteristics of the molecule. 662 Furnace method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 Galactose 674–675 Galactose 674–675 Galactose 674–675 Galactose			
France, zinc-air batteries in 229 Free raticals Particles with unpaired electrons. 730 Fission Nuclear reaction that yields energy by splitting larger atoms to form more stable, smaller atoms. 738–739 Flame retardant, phosphates in 103 Flashtubes 523 Flerov Laboratory of Nuclear Reactions 52 Fluoriae ion, tooth decay and 186 Fluoriae (F) covalent bond formation 449–450 diatomic molecules of 55 electron configuration and orbital diagram 427 how made 365 hydrogen bonds and 553 most common bonding pattern 455 oxidation numbers and 214 production of 396–397 Free raticals Particles with unpaired electrons. 730 Gay-Lussac's Law 488 greenhouse gases 384–385 heterogeneous equilibria and 630–632 ideal 485 ideal gas calculations 494–502 instrument-carrying balloons and 493 internal combustion engine and 492 liquids changing from and into 534–536 model 484 molar volume 503 noble 43 partial pressure of 509–513, 595 particle collisions 484 pressure 485 pressure and industrial safety 501–502 properties of 485			
Fire extinguishers, sodium carbonate in 175 Fission Nuclear reaction that yields energy by splitting larger atoms to form more stable, smaller atoms. 738–739 Flame retardant, phosphates in 103 Flashtubes 523 Flerov Laboratory of Nuclear Reactions 52 Fluorapatite, tooth decay and 186 Fluoride ion, tooth decay and 186 Fluorine (F) covalent bond formation 449–450 diatomic molecules of 55 electron configuration and orbital diagram 427 how made 365 hydrogen bonds and 553 most common bonding pattern 455 oxidation numbers and 214 production of 396–397 Fructose 674–675 Functional group A small section of an organic molecule that to a large extent determines the chemical and physical characteristics of the molecule. 662 Functional group A small section of an organic molecule that to a large extent determines the chemical and physical characteristics of the molecule. 662 Furnace method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 Galactose 674–675 Galapagos Islands, global warming experiments at 385 partial pressure of 509–513, 595 partial pressure of 509–513, 595 particle collisions 484 pressure 485 pressure and industrial safety 501–502 properties of 485	light emitted from 421		=
Fission Nuclear reaction that yields energy by splitting larger atoms to form more stable, smaller atoms. 738–739 Flame retardant, phosphates in 103 Flashtubes 523 Flerov Laboratory of Nuclear Reactions 52 Fluorapatite, tooth decay and 186 Fluoriale ion, tooth decay and 186 Fluorine (F) covalent bond formation 449–450 diatomic molecules of 55 electron configuration and orbital diagram 427 how made 365 hydrogen bonds and 553 most common bonding pattern 455 oxidation numbers and 214 production of 396–397 Fructose 674–675 Functional group A small section of an organic molecule that to a large extent determines the chemical and physical characteristics of the molecule. 662 Furnace method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 Fusion Nuclear reaction fand orbital determines the chemical and physical characteristics of the molecule. 662 Furnace method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 Galactose 674–675 Galapagos Islands, global warming experiments at 385 periments at 385 Galileo Galilei 9 Gallium-67, radioactive decay of 724 production of 396–397 Gamma aminobutanoic acid, gamma Functional group A small section of an ofsa0–632 ideal 485 ideal gas calculations 494–502 instrument-carrying balloons and 493 internal combustion engine and 492 liquids changing from and into 534–536 model 484 molar volume 503 noble 43 partial pressure of 509–513, 595 particle collisions 484 pressure 485 pressure and industrial safety 501–502 properties of 485	_	<u> </u>	•
Functional group A small section of an organic molecule that to a large extent determines the chemical and physical characteristics of the molecule. 662 Flashtubes 523 Flerov Laboratory of Nuclear Reactions 52 Fluorapatite, tooth decay and 186 Fluorine (F) Covalent bond formation 449–450 diatomic molecules of 55 electron configuration and orbital diagram 427 how made 365 hydrogen bonds and 553 most common bonding pattern 455 oxidation numbers and 214 production of 396–397 Functional group A small section of an organic molecule that to a large extent determines the chemical and physical characteristics of the molecule. 662 Funcac method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 Galactose 674–675 Galapagos Islands, global warming experiments at 385 Galileo Galilei 9 Galactose 674–675 Galapagos Islands, global warming experiments at 385 Galileo Galilei 9 Galium-67, radioactive decay of 724 oxidation numbers and 214 production of 396–397 Functional group A small section of an organic molecule that to a large extent determines the chemical and physical characteristics of the molecule. 662 Funcac method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 Galactose 674–675 Galapagos Islands, global warming experiments at 385 partial pressure of 509–513, 595 particle collisions 484 pressure 485 pressure and industrial safety 501–502 properties of 485			
regy by splitting larger atoms to form more stable, smaller atoms. 738–739 Flame retardant, phosphates in 103 Flashtubes 523 Flerov Laboratory of Nuclear Reactions 52 Fluorapatite, tooth decay and 186 Fluoride ion, tooth decay and 186 Fluorine (F) covalent bond formation 449–450 diatomic molecules of 55 electron configuration and orbital diagram 427 how made 365 hydrogen bonds and 553 most common bonding pattern 455 oxidation numbers and 214 production of 396–397 organic molecule that to a large extent determines the chemical and physical characteristics of the molecule. 662 Furnace method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 for allow organic molecules that to a large extent determines the chemical and physical characteristics of the molecule. 662 Furnace method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 G G G G Galactose 674–675 Galapagos Islands, global warming experiments at 385 periments at 385 particle collisions 484 pressure 485 pressure and industrial safety 501–502 properties of 485	Fission Nuclear reaction that yields en-		
Flame retardant, phosphates in 103 Flashtubes 523 Flerov Laboratory of Nuclear Reactions 52 Fluorapatite, tooth decay and 186 Fluorine (F) Covalent bond formation 449–450 diatomic molecules of 55 electron configuration and orbital diagram 427 how made 365 hydrogen bonds and 553 most common bonding pattern 455 oxidation numbers and 214 production of 396–397 determines the chemical and physical characteristics of the molecule. 662 Furnace method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 Galactose 674–675 Galapagos Islands, global warming experiments at 385 Gallieo Galilei 9 Gallium-67, radioactive decay of 724 oxidation numbers and 214 production of 396–397 determines the chemical and physical ideal gas calculations 494–502 instrument-carrying balloons and 493 internal combustion engine and 492 formace method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 formace method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 formace method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 formace method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 formace method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 formace method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 formace method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 formace method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more	ergy by splitting larger atoms to form		
characteristics of the molecule. 662 Fluorapatite, tooth decay and 186 Fluorine (F) covalent bond formation 449–450 diatomic molecules of 55 electron configuration and orbital diagram 427 how made 365 hydrogen bonds and 553 most common bonding pattern 455 oxidation numbers and 214 production of 396–397 characteristics of the molecule. 662 Furnace method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 characteristics of the molecule. 662 Furnace method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 G G Galactose 674–675 Galapagos Islands, global warming experiments at 385 Galileo Galilei 9 Gallium-67, radioactive decay of 724 oxidation numbers and 214 production of 396–397 Gharacteristics of the molecule. 662 instrument-carrying balloons and 493 internal combustion engine and 492 liquids changing from and into 534–536 model 484 molar volume 503 noble 43 partial pressure of 509–513, 595 particle collisions 484 pressure 485 pressure and industrial safety 501–502 properties of 485	more stable, smaller atoms. 738–739		
Furnace method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, diatomic molecules of 55 electron configuration and orbital diagram 427 how made 365 hydrogen bonds and 553 most common bonding pattern 455 oxidation numbers and 214 production of 396–397 Furnace method 368 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 Furnace method 368 Fusion Nuclear reaction that yields internal combustion engine and 492 Icano Sale Sale Sale Sale Sale Sale Sale Sale	Flame retardant, phosphates in 103		
Fusion Nuclear reaction that yields fluorapatite, tooth decay and 186 Fluoride ion, tooth decay and 186 Fluorine (F) covalent bond formation 449–450 diatomic molecules of 55 electron configuration and orbital diagram 427 how made 365 hydrogen bonds and 553 most common bonding pattern 455 oxidation numbers and 214 production of 396–397 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742 G G G G Galactose 674–675 Galapagos Islands, global warming experiments at 385 periments at 385 particle collisions 484 pressure 485 pressure 485 pressure and industrial safety 501–502 properties of 485	Flashtubes 523		
Fluorapatite, tooth decay and 186 Fluoride ion, tooth decay and 186 Fluorine (F) covalent bond formation 449–450 diatomic molecules of 55 electron configuration and orbital diagram 427 how made 365 hydrogen bonds and 553 most common bonding pattern 455 most common bonding pattern 455 oxidation numbers and 214 production of 396–397 energy by combining smaller atoms to make larger, more stable ones. 738, 742 fluorine (F) Saliler atoms to make larger, more stable ones. 738, fluquids changing from and into 534–536 model 484 molar volume 503 noble 43 partial pressure of 509–513, 595 particle collisions 484 pressure 485 pressure and industrial safety 501–502 properties of 485	Flerov Laboratory of Nuclear Reactions		
Fluoride ion, tooth decay and 186 Fluorine (F) covalent bond formation 449–450 diatomic molecules of 55 electron configuration and orbital diagram 427 how made 365 hydrogen bonds and 553 most common bonding pattern 455 most common bonding pattern 455 most common bonding pattern 455 most common of 396–397 make larger, more stable ones. 738, 742 make larger, more stable ones. 738, 1iquids changing from and into 534–536 model 484 molar volume 503 noble 43 partial pressure of 509–513, 595 particle collisions 484 pressure 485 pressure and industrial safety 501–502 properties of 485		•	
Fluorine (F) covalent bond formation 449–450 diatomic molecules of 55 electron configuration and orbital diagram 427 how made 365 hydrogen bonds and 553 most common bonding pattern 455 most common bonding pattern 455 most common bonding pattern 455 most common of 396–397 Fluorine (F) 742 534–536 model 484 molar volume 503 noble 43 partial pressure of 509–513, 595 particle collisions 484 pressure 485 pressure 485 pressure and industrial safety 501–502 production of 396–397 Galma aminobutanoic acid, gamma properties of 485	- ·		
covalent bond formation 449–450 diatomic molecules of 55 electron configuration and orbital diagram 427 how made 365 hydrogen bonds and 553 most common bonding pattern 455 most common bonding pattern 455 oxidation numbers and 214 production of 396–397 Galactose 674–675 Galactose 674–675 Galactose 674–675 Galapagos Islands, global warming expartial pressure of 509–513, 595 particle collisions 484 pressure 485 pressure and industrial safety 501–502 properties of 485	•	——————————————————————————————————————	
diatomic molecules of 55 electron configuration and orbital diagram 427 how made 365 hydrogen bonds and 553 most common bonding pattern 455 most common bonding pattern 455 Gallium-67, radioactive decay of 724 oxidation numbers and 214 production of 396–397 Gallactose 674–675 Galapagos Islands, global warming expartial pressure of 509–513, 595 particle collisions 484 pressure 485 pressure and industrial safety 501–502 properties of 485	. ,	, 12	
electron configuration and orbital diagram 427 Galapagos Islands, global warming exhow made 365 periments at 385 particle collisions 484 hydrogen bonds and 553 Galileo Galilei 9 pressure 485 most common bonding pattern 455 Gallium-67, radioactive decay of 724 oxidation numbers and 214 Galvanizing nails 132 production of 396–397 Gamma aminobutanoic acid, gamma partial pressure of 509–513, 595 particle collisions 484 pressure 485 pressure and industrial safety 501–502 production of 396–397 Gamma aminobutanoic acid, gamma properties of 485		G	
diagram 427 Galapagos Islands, global warming ex- how made 365 periments at 385 particle collisions 484 hydrogen bonds and 553 Galileo Galilei 9 pressure 485 most common bonding pattern 455 Gallium-67, radioactive decay of 724 oxidation numbers and 214 Galvanizing nails 132 production of 396–397 Gamma aminobutanoic acid, gamma partial pressure of 509–513, 595 particle collisions 484 pressure 485 pressure and industrial safety		C 1 (7/ (75	
how made 365 periments at 385 particle collisions 484 hydrogen bonds and 553 Galileo Galilei 9 pressure 485 most common bonding pattern 455 Gallium-67, radioactive decay of 724 oxidation numbers and 214 Galvanizing nails 132 501–502 production of 396–397 Gamma aminobutanoic acid, gamma properties of 485	-		-
hydrogen bonds and 553 Galileo Galilei 9 pressure 485 most common bonding pattern 455 Gallium-67, radioactive decay of 724 pressure and industrial safety oxidation numbers and 214 Galvanizing nails 132 501–502 production of 396–397 Gamma aminobutanoic acid, gamma properties of 485			
most common bonding pattern 455 Gallium-67, radioactive decay of 724 pressure and industrial safety oxidation numbers and 214 Galvanizing nails 132 501–502 production of 396–397 Gamma aminobutanoic acid, gamma properties of 485		-	=
oxidation numbers and 214 Galvanizing nails 132 501–502 production of 396–397 Gamma aminobutanoic acid, gamma properties of 485	· · · · · ·		÷
production of 396–397 Gamma aminobutanoic acid, gamma properties of 485	- -	•	
· · ·			
animiously is designed to the state of the s	-	_	
valence electrons of 449 intoxicating liquids and 89 real 484			

particles and pressure 490 Glioma 741 Halons 272 relationship between number of gas particles and volume 491 673, 687, 741 Hearst, William Randolph 167 relationship between pressure and temperature 488 empirical and molecular formulas relationship between volume and pressure 486–487 Glucamic acid, structure of 679 Glioma 741 Halons 272 Heard water, soaps and detergents in 587 Hear The energy that is transferred from a region of higher temperature to a region of lower temperature as a consequence of the collisions of
relationship between pressure and temperature 488 are lationship between volume and pressure 486—487 Glucose 674—675 are lationship between volume and Glucose 674—675 are mpirical and molecular formulas from a region of higher temperature to a region of lower temperature as a consequence of the collisions of
relationship between volume and of 346 to a region of lower temperature as pressure 486–487 Glutamic acid, structure of 679 a consequence of the collisions of
pressure 486–487 Glutamic acid, structure of 679 a consequence of the collisions of
relationship between volume and Glutamine, structure of 679 particles. 260
temperature 489 Glycerol or glycerin 663 in chemical equations 128
solubility of 594–595 Glycine, structure of 678 in endothermic reactions 265–266, typical particle velocities 484 Glycogen 676–677 614–615
typical particle velocities 484 Glycogen 676–677 614–615 universal gas constant 494 Gold (Au) as energy 260
vapor as 534 atom of 47 transfer 259–260
volume occupied by particles 484 as malleable 43 Heat of reaction 264
Gaseous elements 45 origin of name 41 Heavy-ion therapy 52
Gasoline 221, 661 scanning tunneling microscope imin catalytic converters 221 scanning tunneling microscope imineatelytic converters 221 Age of 46 Heavy water, freezing point of 313 Heidelberg Radiology Clinic 52
combustion of 219 age of 46 Gold-198, radioactive decay of 724 Helium Heidelberg Radiology Clinic 52 Helium
composition of 82 Graduated cylinder 21 to avoid the bends 596
in internal combustion engines 492 Gravitational attraction, weight and 16 formation 742
Gastric juice 506 Greenhouse gases 384, 597 Helium-4, in treating brain cancer 741.
pH and 179 Greenspan, Alan 48 See also Alpha particles Gas pressure. See also Gas Green Chemistry 5 Hematite 363
boiling-point temperature and exter- Green Chemistry 5 decaffeinating coffee and 515 Hemoglobin 221
nal 542–544 Designing Safer Chemicals Award 5 carbon monoxide poisoning and
breathing and 493 development of new and better 221
in bubble formation 542–544 catalysts 621, 673, 687, 741 iron ions in 100
in combined gas law equation 500–502 Green Chemistry Challenge Awards Heptane, octane rating and 661 Heterogeneous catalyst A catalyst that
Dalton's Law of partial pressures Green Chemistry Program 5 is in the same phase as the reactants
509–513 Making Chemicals from Safer Reac- (so that all substances are gases or all
equilibrium vapor 539–541 tants 351 are in solution). 620
in gas stoichiometry 502–509 Sea-Nine antifoulant and 5 in ideal gas equation 494 Sea-Nine antifoulant and 5 equilibrium in which the reactants
spray paint and 514
Ground state The condition of an atom whose electrons are in the orbitals that and products are not all in the same phase (gas, liquid, solid, or aqueous).
number of gas particles and 490 give it the lowest possible potential 630–631
standard 503 Hexane, solubility in 5/8–581
temperature and 488 volume and 486–487 Group All the elements in a given col- 1-Hexanol 660 3-Hexanol, molecular structure of 660
Cas stoichiometry 502-509 umn on the periodic table; also called High-density polyethylene (HDPF) 693
Cay Lucsac's Law. The pressure of a Historia structure of 679
gas is inversely proportional to the Guitar strings, like electrons 414–416 Homogeneous catalyst A catalyst that
volume it occupies if the number of H is in the same phase as the reactants
gas particles and the temperature are constant. 488 Half-life The time it takes for one-half are in solution). 620
Geometric sketch 86 of a sample to disappear. 726–728 Homogeneous equilibrium An equi-
Geometry 467–471. See Molecular Half-reaction Separate oxidation or librium system in which all of the
shape reduction reaction equation in which components are in the same phase
Study Sheet 472 electrons are shown as a reactant or (gas, liquid, solid, or aqueous). 624
German Cancer Research Center 52 product. 210 Hormone 685 Gesellschaft fur Schwerionenforschung Halogen Huber, Claudia 641
(GSI) 52 bonding pattern 81 Hydrazine, production and use 410
Gide, Andre 33 covalent bond formation 454 Hydride ion 98

nuclear fusion of 742

Hydriodic acid	oxidation number of 214	acids and 160–166
forming name of 168	position on preiodic table 45	pH and 178–180
production and use 407, 654	production and use 244, 621–624	Hydrophilic ("water loving") A polar
Hydrobromic acid, forming name of	structure 54	molecule or ion (or a portion of a
168	in synthesis gas 622	molecule or polyatomic ion) that is
Hydrocarbon Compounds that contain	Hydrogen atom, electron wavesforms in	attracted to water. 582
only carbon and hydrogen. 82, 557	416–423	Hydrophobic ("water fearing") A
catalytic converters and 221 in combustion reactions 219	Hydrogen bond The intermolecular attraction between a nitrogen, oxygen,	nonpolar molecule (or a portion of a
in internal combustion engines 492	or fluorine atom of one molecule	molecule or polyatomic ion) that is
London forces among 556–557	and a hydrogen atom bonded to a	not expected to mix with water. 582 Hydrothermal vent 641–642
solubility of 579	nitrogen, oxygen, or fluorine atom in	Hydroxide ion
Hydrochloric acid 160–161, 621	another molecule. 553–555	covalent bond formation 453
as binary acid 162	in ethanol/water solutions 576	Lewis structure of 101
dissolving basic hydroxides 184	predicting existence of 559	solubility of compounds with 141
dissolving in water 160	in proteins 682	Hydroxides Compounds that contain
dissolving limestone 186	Hydrogen bromide, threshold limit	hydroxide ions. 173
in formation of magnesium chloride	value, or TLV 522	Hydroxyapatite, in tooth enamel 186
247	Hydrogen carbonate ion	3-Hydroxybutanal 669
forming name of 168	as amphoteric 191	17-Hydroxyprogesterone, molecular
in gastric juices 506	as weak base 175	structure of 686
in processing corn syrup 160	Hydrogen chloride 74	Hypochlorite ion
production and use 74, 161, 236,	chemical bonds in 74	in bleach 188
325, 525	dipole-dipole attractions 547	sunlight and swimming pools 241
reaction with calcium carbonate 126	dissolved in water 160 Lewis structure of 80–81	Hypothesis, in scientific method 8–9
as strong acid 163, 165, 166	solubility in water 593	I
Hydrochlorofluorocarbons (HCFCs)	Hydrogen cyanide 621	ı
272	molecular geometry of 471	Ideal Gas A gas for which the ideal gas
Hydrofluoric acid	Hydrogen fluoride	model is a good description. 485
forming name of 166	hydrogen bonds and 553	calculations involving 494–502
light bulbs and 237	Lewis structure of 81	equation stoichiometry and
used to make CFCs 236	Hydrogen halides, as polar molecules	502–507
Hydrogenation A process by which	553	Ideal gas constant (R) 494
hydrogen is added to an unsaturated	Hydrogen iodide, Lewis structure of 81	Ideal Gas Equation 494–499
triglyceride to convert double bonds	Hydrogen peroxide	combined gas law equation and 500 equation stoichiometry and
to single bonds. This can be done by	aging and 212	504–509
combining the unsaturated triglycer-	composition of 73	Ideal gas model The model for gases
ide with hydrogen gas and a platinum catalyst. 683	dark bottles and 243 empirical and molecular formulas	that assumes (1) the particles are
Hydrogen (H)	of 346	point-masses (they have mass but no
in acid-base reactions 180–192	as oxidizing agent 212	volume) and (2) there are no attrac-
acids and 160–165	Hydrogen sulfate ion 188	tive or repulsive forces between the
atomic orbitals 416-423	as cleaning agent 188	particles. 485
from Big Bang 742	as weak acid 166	Incandescent light bulbs 496
in Brønsted-Lowry acids and bases	Hydrogen sulfide	Induced dipole 556
188–190	Lewis structure of 81	Industrial chemistry 4, 5
combustion 126, 219, 263	threshold limit value, or TLV 522	Infrared (IR) radiation 262
covalent bond formation 450	Hydrolysis A chemical reaction in	Inner transition metals The 28 ele-
electronegativity of 548	which larger molecules are broken	ments at the bottom of the periodic
formation from water 219	down into smaller molecules by a	table. 44
formation of hydrogen molecules 450	reaction with water in which a water	Insoluble substances 140–141, 578–581 Instantaneous dipole 556
in formation of water 126–127	molecule is split in two, each part joining a different product molecule.	Intermolecular attraction Attraction
ion formation 96	689	between molecules. 553–557
isotopes of 50–51	Hydronium ion H ₃ O ⁺ 160–161	dipole-dipole attraction 547

in acid-base reactions 180-185

hydrogen bonds 553–555

London forces 556–557	names to formulas 107–108	J
Internal combustion engine 492	polyatomic ions is 101–103	J
effects of weather on 498	reactions of acids with 181	Jeans, James Hopwood 48
gases and 492	recognizing from formulas 104	Jesus of Nazareth 734
Internal kinetic energy. See Thermal	solutility of 141	Jewelry, elements in 41
Energy	solution of 133–135	Joule, J The accepted SI unit for energy.
International System of Measurement	as strong and weak bases 175	257
10–19	structure of 100–102	K
abbreviations 13	types of 104	
metric prefixes 12–13	uses of 94, 102	Kaposi's sarcoma 673
units derived from base units 12	Ionizing radiation Alpha particles, beta	Kelvin, a temperature unit 19
Intestines 689 Intoxicating liquids 89	particles, and gamma photons, which	Kelvin scale 11, 18–19
Iodide ion, solubility of compounds with	are all able to strip electrons from	gas temperature and 485
141	atoms as they move through matter,	temperature conversions for 312–314
Iodine (I)	leaving ions in their wake. 730	Kerosene, London forces and 556
beta emission and 720	Iridium (Ir), in catalytic converter 221	Ketone A compound that have a hy-
diatomic molecules of 55	Iridium-192, checking pipe joints and	drogen atom or a hydrocarbon group
electron capture and 721	735	connected to a -CHO group. 666
London forces and 556	Iron(II) sulfate, in global warming ex-	Kettering, Charles F. 414
most common bonding pattern 455	periments 385 Iron(III) sulfate, formula mass calcula-	Khirbat Qumrân 734
name of 41	tions for 341, 343	Kilocalorie (kcal, Cal) 257
production and use 235	Iron-59 736	Kilogram (kg) 11
structure of 55 tincture of 556	Iron (Fe)	Kilojoule (kJ) 258
Include of 350	electron configuration and orbital	Kilometer (km) 13
electron capture by 736	diagram for 432	Kilopascal (kPa) 485
radioactive decay of 721	formation of 743	Kilo (k) prefix 13
iodine-131 730–731	formation of pig 218, 509	Kinetic energy, KE The capacity to do work resulting from the motion of an
Iodine pentafluoride, production and use	global warming and 384–385	object. 251
243, 405	as limiting reactant in global warm-	chemical reactions and 263–264
Ion Any charged particle, whether posi-	ing 384	in formation of water 263
tively or negatively charged. 48–50	Island of stability, of nuclides 719	internal and external 259
anion 49. See also Anion	Isobutene, use 662	mass and 251
cation 49. See also Cation	Isoleucine (Ile, I), molecular structure	of reactant molecules 611-612
charges on monatomic 98 formation of 75	of 678	solution of ammonium nitrate and
monatomic anion charges 96	Isomers Compounds that have the same molecular formula but different	264
monatomic anion names 98	molecular structures. 464	velocity and 251
monatomic cation. See Cation,	Lewis structures of 464–465	Kinetic molecular theory. See Particle
monatomic	of organic compounds 658	nature of matter Knockout drops 464
polyatomic. See Polyatomic ion	Isooctane 661	Krypton, light bulbs and 499
predicting charges 95–98	Isopropyl alcohol. See 2-propanol	Krypton-81 717, 734
size of 100	Isotopes Atoms that have the same	71
spectator 139–140	number of protons but different num-	L
symbols for 49 Ionic bond The attraction between a	bers of neutrons. They have the same	Lactase, in digestion 688
cation and an anion. 75–77	atomic number but different mass	Lactic acid, in cosmetic lotion 205
in ionic compounds 78	numbers. 50–52	Lactose, or milk sugar 676
predicting existence of 548–551	of artificial elements 52	Laskowski, Edweard R. 687
Ionic compound A compound that	atomic numbers of 51	Latent fingerprints 541
consists of ions held together by ionic	of carbon 333	Lawrence Laboratory 725
bonds. 78, 94–108	mass numbers of 51	Law of Conservation of Energy
as bases 175	in nuclear reactions 722 symbol for 716–717	Energy can be neither created nor de-
binary 104, 107, 208–210	Isovaleraldehyde 665–666	stroyed, but it can be transferred from
formula mass of 340, 341	150 valeraidenyde 00) – 000	one system to another and changed
formula mass of 340-341		from one form to another. 252

I J 0		Maria
L-dopa 8	groups as far apart as possible. It leads	Magic numbers and nuclear stability 52,
Lead(II) ion, solubility of compounds	to angles of 180° between the groups.	737
with 141	471	Magnesium (Mg), meals ready to eat
lead-206, in radioactive decay series 729	Linear molecules 471, 472	(MREs) and 573
Lead-acid batteries, chemistry of 229	Line drawing 582, 659	Magnesium chloride, production and
Lead (Pb)	Ling Po 7	use 247
in creating elements 110 52	Liquid The state in which a substance	Magnesium oxide 106
density of 301	has a constant volume at a constant	Magnesium sulfate, use 205
gasoline and 244	temperature but can change its shape.	Magnetic field, in electromagnetic radia-
Lebowitz, Fran 287	34, 36	tion 261
Leclanché cell 226–227	boiling 542–544	Magnetic resonance imaging (MRI) 732
Length 14–15	dissolving gases in 594	Main-group element The elements in
range of 15	dissolving solids in 588-593	groups 1, 2, and 13 through 18 (the
Leucine (Leu, L), structure of 678	dynamic equilibrium between va-	"A" groups) on the periodic table; also
Levi, Primo 3	pors and 595	called representative elements. 44
Levocarbidopa, in Parkinson's disease 8	heterogeneous equilibria and	Malleable Capable of being extended
Levodopa, in Parkinson's disease 8	630–631	or shaped by the blows of a hammer.
Lewis electron-dot symbols 79	Liquid-liquid solutions 136	43
Lewis structure A representation	Liquid elements 45	Maltase, in digestion 688
of a molecule that consists of the	Liter 12	Maltose, molecular structure of 676
elemental symbol for each atom in	Lithium-7, in treating brain cancer 741	Manganese (Mn)
the molecule, lines to show covalent	Lithium (Li)	in dry cell batteries 226–227
bonds, and pairs of dots to indicate	from Big Bang 742	how made 360
lone pairs. 80–84, 450, 455–465	electron configuration and orbital	Manganese(II) oxide, naming 105
general steps for drawing 458, 484	diagram 426	Manganese(II) phosphate
resonance and 465–467	formation of 742	production and use 242
simple procedure 83–85		uses 205
Study Sheet 456–457	Lithium batteries 229	Manganese dioxide, in dry cell batteries
Le Chatelier's principle If a system at	Lithium hydroxide, uses 173	226–227
equilibrium is altered in a way that	Litmus, detecting acids and bases with	Marble, acid rain and 167
disrupts the equilibrium, the system	180	Margarine 683
will shift so as to counter the change.	London forces The attractions pro-	Martin, John 384–385
638–640	duced between molecules by instanta-	Mass The amount of matter in an
Libraries, of drugs 673	neous and induced dipoles. 556–557	object. Mass can also be defined as
Life	molecular size and 556	the property of matter that leads to
hydrogen bonds and 554	Lone pair Two electrons that are	gravitational attractions between
origin of 640–641	not involved in the covalent bonds	objects and therefore gives rise to
	between atoms but are important for	
Light bulbs	explaining the arrangement of atoms	weight. 16–17 base unit of 11
argon gas in 512	in molecules. They are represented by	
filament evaporation in 496, 499	pairs of dots in Lewis structures. 80,	density and 301–303
flash tubes 523	450	of elements and compounds
fluorescent 521	Los Angeles, photochemical smog in	342–346
"Like dissolves like" guideline, for solu-	266	English-metric unit conversions of
bility 578–581	Low-density polyethylene (LDPE) 693	309
Lime 245	Lucretius 177	kinetic energy and 251
Limestone 186, 616	Luminous intensity, base unit for 11	measuring 16–17
acid rain and 167	Luminous tubes 501	percentage by 306–307
increasing permeability of 161	Lungs, gases in 493	range of 17
Limestone caverns 204	Lye. See Sodium hydroxide	weighted average 331
Limiting reactant The reactant that	Lye soap 586	weight and 16–17
runs out first and limits the amount	Lysine (Lys, K)	Mass density Mass divided by volume
of product that can form. 376–381	molecular structure of 679	(usually called density). 301–305
global warming and 384–385	in salt bridges 682	as conversion factor 303–305
how chosen 376–377	in out offages 002	Mass number The sum of the number
Study Sheet 380	M	of protons and neutrons in an atom's
Linear geometry The geometric ar-		nucleus. 51
rangement that keeps two electron	"Mickey Finn" sedative 464	binding energy versus 738

in nuclear equations 723	combustion of 250	of solids 34–35
in nuclides 716	covalent bond formation 451	strengths and weaknesses of 448
Mass percentage 306	in hydrogen gas production	valence-bond 449–454
Matches, chemicals in 131	621–624	Moderator A substance in a nuclear
Matter Anything that has mass and	molecular shape 86-87, 468	reactor that slows neutrons as they
takes up space. 16	solubility in water 593	pass through it. 740
chemistry and 4	Methanethiol, in natural gas 219	Molarity (abbreviated M) Moles of
classification of 70-73	Methanoic acid 664	solute per liter of solution. 387–392
existence of 437	Methanol 447	equation stoichiometry and
origin of 742	density of 304	388–392
as solid, liquid, or gas 34-38	hydrogen bonds and 555	Molar mass The mass in grams of one
Mayo Clinic 687	as polar molecule 553	mole of substance. 335–338
McGwire, Mark 687	production and use 244, 527, 627	from atomic mass 335
Meals ready to eat (MRE) 573	water solubility of 580	calculations using atomic mass 336
Measurement 9, 9–23	Methionine (Met, M), structure of 679	-
digital readouts 23	3-Methylbutanal 665–666	calculations using ionic formula mass 341
International System of 10-11	Methylene chloride, in decaffeinating	
reporting values from 20	coffee 515	calculations using molecular mass
trailing zeros and 22	2-Methylpropene 662	338
uncertainty in 20-23, 293	Methyl alcohol 83. See also Methanol	in equation stoichiometry 370–374
Medicine, uses of radioactive substances	Methyl bromide 272	in ideal gas equation 495
in 731–732	determing Lewis structure 458–459	from ionic formula mass 340
Mega (M) prefix 13	ozone layer and 3	from molecular mass 337–338
Meitner, Lise 40	threshold limit value, or TLV, and	Molar volume at STP 503
Meniscus, in measurement 21	522	Mole (mol) The amount of substance
Menstrual cycles, hormones in 686	Methyl cyanoacrylate, molecular struc-	that contains the same number of
Menthol 584	ture of 473	particles as there are atoms in 12 g of
Metal-nonmetal compounds	Methyl ethyl ketone or MEK, molecular	carbon-12. 11, 333–334
bonds in 549	structure of 666	in equation stoichiometry 502–509
formulas and names of 104	Metric-metric unit conversions 289–291	in ideal gas equation 503
Metallic bond The attraction between	Metric prefixes 12–13	Molecular compound A compound
the positive metal cations that form	table of 13	composed of molecules. In such
the fundamental structure of a solid	Metric system 10. See also International	compounds, all of the bonds between
metal and the negative charge from	System of Measurement	atoms are covalent bonds. 78
the mobile sea of electrons that sur-	MeV (million electron volts) 737	attractive forces in 559
round the cations. 558	Microwaves 262	in oxidation-reduction reactions
Metallic elements 44	micro (μ) prefix 13	211
attractive forces in 558-559	Mifepristone 705	water solubility of 579
ion charges of 96–98	Milk, pH of 179	Molecular dipole A molecule with an
Metalloids or semimetals The ele-	Millimeter of mercury (mmHg), as unit	asymmetrical distribution of positive
ments that have some but not all of	of pressure 485	and negative charge. 547
the characteristics of metals. 44	milli (m) prefrix 13	Molecular equation. See Complete
bonding patterns of 457	Miscible Can be mixed in any propor-	equation
in periodic table 44	tion without any limit to solubility.	Molecular formula The chemical
Metals The elements that (1) have a	576	formula that describes the actual
metallic luster, (2) conduct heat and	Mixture A sample of matter that con-	numbers of atoms of each element in
electric currents well, and (3) are mal-	tains two or more pure substances and	a molecule of a compound. 346
leable. 43, 56–57	has variable composition. 71	
electrolysis to purify 227	of gases 509	from empirical formula 350–353
forming cations 95	Model A simplified approximation of	empirical formulas versus 346
sea of electrons model 57	reality.	Study Sheet 352
Meter 10, 11	calculating 387	Molecular geometry The description
Methamphetamine, molecular structure	collision theory as 610–616	of the arrangement of all the atoms
of 582–583	of gases 37	around a central atom in a molecule
Methamphetamine hydrochloride	ideal gas 485	or polyatomic ion. This description
582–583	of liquids 36	does not consider lone pairs. 467–
Methane 82, 447	of metallic elements 56	474. See also Geometry

Mologular mass. The weighted ever	Managanta Company, 621	calubility of compounds with 1/1
Molecular mass The weighted aver-	Moss Landing Marine Laboratories 384	solubility of compounds with 141
age of the masses of the naturally	Moss Landing Marine Laboratories 384	Nitric acid
occurring molecules of a molecular substance. It is the sum of the atomic	Mount Everest, atmospheric pressure at	acid rain and 167
masses of the atoms in a molecule.	the top 545 MTBE 665	formation of 640
337–338	Multiplication	forming name of 169
calculating 338	rounding off for 294–299	production and use 241
in calculating molecular formulas	significant figures for 294–299	reaction with sodium hydroxide 181–183, 181–185
350–351	Mylar, as polyester 693	solution of 181
Molecular models 54	iviyiai, as polyester 0/3	as strong acid 165
Molecular polarity, predicting 552	N	Nitride ion, forming name of 98
Molecular Shape 86–88		Nitril hydratase 621
ball-and-stick model 86	Names	Nitrogen-13, radioactive decay of 724
geometric sketch 86	for acids 168–170	Nitrogen-14, in radiocarbon dating 726
space-filling model 86	for binary covalent compounds 90	Nitrogen (N)
Molecular size, London forces and	for chemical compounds 171–172	covalent bond formation 451
556–557	for elements 40–41	diatomic molecules of 55
Molecule An uncharged collection of	for ionic compounds 98–106	electron configuration and orbital
atoms held together with covalent	for organic compounds 661	diagram 427
bonds. 54	Nano (n) prefix 13	ion formation 96
covalent bonds in 448-454	Natrium 41	Lewis structure 83
diatomic 55	Natural gas 447	liquid 257
as formula unit 339	Nature, elements found in 40	London forces and 558
of hydrogen 54	Neon (Ne)	most common bonding pattern 81,
in molar mass 337	electron configuration and orbital	455
shapes of 86–87, 467–474	diagram 427 luminous tubes and 501	structure of 55
Momentum, of particles in evaporation		triple bonds in 83
535	in neon lights 501, 513 Nerve cells	Nitrogen dioxide
Monatomic anions Negatively charged	intoxicating liquids and 89	acid rain and 167
particles, such as Cl ⁻ , O ²⁻ , and	taste and 177	nitric acid and 640
N ³⁻ , that contain single atoms with a	Net ionic equation A chemical equa-	ozone production and 266–267
negative charge. 96. <i>See also</i> Anion,	tion for which the spectator ions have	threshold limit value, or TLV and
monatomic	been eliminated, leaving only the	522
charges 96	substances actively involved in the	Nitrogen molecules, velocities of 484
naming 98	reaction. 140	Nitrogen monoxide 620
Monatomic cation Positively charged particles, such as Na ⁺ , Ca ²⁺ , and	Net rate of solution 589–591	in acid rain 167
Al ³⁺ , that contain single atoms with a	Neutralization reaction A chemical	catalytic breakdown of 620
positive charge. 97. See also Cation,	reaction between an acid and a base.	how made 496
monatomic	See Acid-base reaction	oxidation-reduction and 211
formation 96–97	Neutron An uncharged particle found	Nitrogen narcosis 596
naming 99	in the nucleus of an atom. 47	Nitrogen oxides
roles in body 100	in nuclear fission 738–739	in automobile exhaust 257
Monatomic ion, charges 98	as nuclear glue 718	ozone and 266–267
Monoethanolamine 637	nuclear stability and 718–719	Nitroglycerine, in decomposition reac-
Monomer The repeating unit in a poly-	Newton (N), a unit of force 16	tions 219
mer. 676	NiCd batteries. See Nickel-Cadmium	Nitrosyl chloride, production and use
in addition polymers 693	batteries	655
in polysaccharides 676–677	Nickel (Ni), in the creation of elements	Nitrosyl fluoride, molecular geometry
in proteins 678	110 and 111 52	473
Monoprotic acid An acid that donates	Nickel-60, gamma ray emission by 722	Nitrous oxide, formation of 130
one hydrogen ion per molecule in a	Nickel-cadmium battery, chemistry of	Noble gases, structure 53
reaction. 162	228	Node The locations in a waveform
Monosaccharide Sugar molecule with	Nicotine 361	where the intensity of the wave is
one saccharide unit. 674	Nippoldt, Todd B. 687	always zero. 415
Monosodium glutamate (MSG), taste	Nitrate ion	Nomenclature. See Chemical nomen-
and 177	resonance and 465-467	clature

represent subscripts. 162

as polar molecule 553

names for 169

Nonmetals The elements that do not amine 667-668 **Nucleus** The extremely small, positively have the characteristics of metals. charged core of the atom. 47 arene 662-663 Some of the nonmetals are gases at of atom 47 carboxylic acid 664 room temperature and pressure, some creation of new elements and 52 condensed formula 659 are solids, and one is a liquid. Various electrons around 416-422 ester 666-667 colors and textures occur among the of helium atoms 53 ether 665 nonmetals. 43 mass number and 51 how to describe 658-660 forming anions 95 stability of 718 ketone 666 most common bonding patterns 83 **Nuclide** A particular type of nucleus line drawing 582, 659 Nonpolar covalent bond A covalent that is characterized by a specific table of types 670-671 bond in which the difference in elecatomic number (Z) and nucleon Organophosphorus compounds 361 tron-attracting ability of two atoms in number (A). 716 Oxalic acid 664 a bond is negligible (or zero), so the band of stability of 719 uses 160 atoms in the bond have no significant in nuclear equations 722-726 Oxidation Any chemical change in charges. 74 radioactive 727 which at least one element loses elecpredicting existence of 548-551 symbol 716-717 trons, either completely or partially. Nonpolar molecular substance, solubility uses for radioactive (table) 736 208-209, 211 and 578-579 Numbers, exact or not 295 Oxidation-reduction reaction The Normal boiling-point temperature Nutrients, for phytoplankton 384 The temperature at which the equichemical reactions in which there Nylon 691 librium vapor pressure of the liquid is a complete or partial transfer of molecular structure of 691 equals one atmosphere. 545 electrons, resulting in oxidation and production of 350, 691-692 North Carolina State University 266 Nylon-66 350-351 reduction. These reactions are also Notation, for nuclides 716-717 called redox reactions. 208-211 0 **Nuclear chemistry** The study of the within batteries 224-229 properties and behavior of atomic half-reaction 210 "Oil rig" mnemonic 209 nuclei. 715 oxidation 208 Objectives 6 Nuclear decay series A series of radiooxidation numbers (or states) Observation, in scientific method 8-9 active decays that lead from a large 213-218 Octane rating 661 unstable nuclide, such as uraniumreduction 209 Octet of electrons 80-81, 456-457 238, to a stable nuclide, such as leaduses of 207 Oil 186, 556-557 206. 729 Oxidation number (or state) A tool Oil industry 186 Nuclear energy 737-742 Olestra 684-685, 742-743 for keeping track of the flow of elec-Nuclear equation The shorthand nota-Oligopeptide 680 trons in redox reactions. 213-218 tion that describes nuclear reactions. Open-chain forms, of monosaccharides assignment of oxidation numbers It shows changes in the participating 674-675 214 nuclides' atomic numbers (the num-Orange juice, pH of 179 Study Sheet 214 ber of protons) and mass numbers Orbitals See Atomic orbitals (the sum of the numbers of protons Oxidation state. See Oxidation number **Orbital diagram** A drawing that uses and neutrons). 722-726 Oxidizing agent A substance that gains lines or squares to show the distribu-Nuclear fission 738-739 electrons, making it possible for antion of electrons in orbitals and ar-Nuclear fusion 742 other substance to lose electrons and rows to show the relative spin of each Nuclear power plant 740-741 be oxidized. 210 electron. 424, 426-427 Nuclear reaction A process that results aging and 212 Study Sheet 431, 456 in a change in an atomic nucleus (as defined 210 Organic acid Carbon-based acids. 162 opposed to a chemical reaction, which oxidation numbers and 213-218 involves the loss, gain, or sharing of **Organic chemistry** The branch of ozone as 266 chemistry that involves the study electrons). 722-726 Oxoacid. See Oxyacid of carbon-based compounds. 82, Nuclear reactors 738-741 Oxyacid (oxoacid) Molecular sub-658-672 Nuclear stability 718-719, 737-738 stances that have the general formula Nucleon number The sum of the num-Organic compound 658-672 H_aX_bO_c. In other words, they contain alcohol 663 bers of protons and neutrons (nuclehydrogen, oxygen, and one other eleons) in the nucleus of an atom. It is aldehyde 665 ment represented by X; the a, b, and c also called the mass number. 716 alkane 661

alkene 662

alkyne 662 amide 668

Nucleons The particles that reside in

neutrons). 716

the nucleus of atoms (protons and

Oxygen (O)	gas character, the partial pressure of	group or family 43
absorbing ultraviolet radiation 269	any gas in a mixture is the pressure	hydrogen, position on periodic table
bonding patterns 81, 455	that the gas would yield if it were	45
in combustion reactions 219-221	alone in the container. 509	metals, nonmetals, and metalloids
covalent bond formation 452-453	effect on gas solubility 595	44
diatomic molecules of 55 electronegativity of 548	equilibrium vapor pressure as 539–540	modern model of the atom and 428–436
electron configuration and orbital	Particle-particle attractions 547, 621	order of filling of atomic orbitals
diagram 427	summary 558–559	and 428–430
in formation of water 126–127	Particles	periods 45
in internal combustion engines 492	in atoms 47	representative (or main-group)
ion formation 95–96	attractive forces among 547-560	elements, transition metals, and
oxidation numbers for 214	in collision theory 610	inner transition metals 44
in ozone layer 269	in condensation 534	Periods The horizontal rows on the
structure 55	in evaporation 535–536	periodic table. 45
Ozone 266–273	in gases 37	Peroxides, oxidation numbers of 214
absorbing ultraviolet radiation 269	in liquids 36	Petroleum 556–557
chlorine catalyzed destruction	radiant energy as 260–261	pH 178–179
618–620	in solids 34–35	acid rain and 178
damage from chlorofluorocarbons	space occupied 37 Particle nature of matter 34–38	Pharmaceuticals 673
270	gas 34, 37–38	Phenylalanine (Phe, F), molecular structure of 679
destruction 269–270	liquid 34, 36	Phosgene gas, production and use 655
as greenhouse gas 384	solids 34–35	Phosphate, production 213
as pollutant 266	Pascal (Pa), pressure unit 485	Phosphate ion, solubility of compounds
process of destruction 610–614	Pearl ash, empirical formula for 349	with 141
ultraviolet radiation and 269	Pentane	Phosphate rock, in furnace method 330
uses 266 Ozone hole 271	hexane solubility of 578	Phosphide ion 98
Ozone layer	in solution 136	Phosphoric acid 188
CFCs and 270	water solubility of 578	forming name of 169
effect of halons on 272	Pepper, spiciness of 583	furnace method of preparation 330
formation of 269	Pepsin, in digestion 688	neutralizing 390
20/	Peptide A substance that contains two	production of 368
P	or more amino acids linked together by peptide bonds. 680	reaction with sodium hydroxide 184
p block, of elements 428–430	how form 640-642	in toilet bowl cleaners 188
Paint spraying, preventing air pollution	Peptide bond An amide functional	uses 160, 163
514	group that forms when the carboxylic	Phosphorus (P)
Palladium, in catalytic converter 221	acid group on one amino acid reacts	bonding pattern 81
Pancreatic amylase, in digestion 688	with the amine group of another	covalent bond formation 452
Pancreatic lipase, in digestion 688 Paper, saving acidic 187	amino acid. 680	in furnace method 368
Parkinson's disease 7–8	Percentage 306–307	ion formation 96
positron emission tomography and	as conversion factor 306	London forces in 558
437	by mass, definition 306 by volume 306	most common bonding pattern 455 in oxidation-reduction reactions
scientific method and 7–8	Percentage calculations 306–307, 311	215
Partially hydrogenated triglycerides	in calculating empirical formulas	in photophor 347
683–684	349	production of 213, 408
Partial charge	in calculating molecular formulas	Phosphorus pentachloride, production
in chemical bonds 74, 548–551	353	and use 246
in hydrogen bonds 553	Percent yield The actual yield divided	Phosphorus tribromide 383
in London forces 556–557	by the theoretical yield times 100.	Phosphorus trichloride, production and
Partial electron transfer in oxidation-re-	382–384	use 630
duction reactions 211	why less than 100% 382-383	Photochemical smog, formation of
Partial pressure The portion of the to-	Periodic table of the elements 42-46	266–267
tal pressure that one gas in a mixture	electronegativity and 548	Photons Tiny, massless packets or par-
of gases contributes. Assuming ideal	group number 43	ticles of radiant energy. 260

Photophor, empirical formula for 347	repeating units. 676	Precipitate A solid that comes out of
Physical states, in chemical equations	addition 693–694	solution. 137
127	formulas for 691	Precipitation The process of forming a
Physics	polysaccharides as 676–677	solid in a solution. 137
chemistry and 34	proteins as 680	tooth decay and 186
of electrons 414–423	synthetic 690–695	Precipitation reaction A reaction in
origin of matter and 640-641	Polypeptide 680. See also Protein	which one of the products is insoluble
Phytoplankton, global warming and	nylon as 691	in water and comes out of solution as
384–385	silk as 690	a solid. 137–143
Pico (p) prefix 13	Polypropylene 694–695	of calcium carbonate 137–140
Pig iron, formation of 509	Polyprotic acid An acid that can do-	Study Sheet 142
Plastic fingerprints 541	nate more than one hydrogen ion per	writing equations for 142–143
Platinum (Pt) 56	molecule in a reaction. 162	Precision The closeness in value of a
as catalyst 640	Polysaccharide Molecule with many	series of measurements of the same
in catalytic converters 221, 620	saccharide units. 676	
density of 302	digestion products 688	entity. The closer the values of the
Plutonium-239	Polystyrene 694–695	measurements, the more precise they
half-life 727	chlorofluorocarbons and 272	are. 20
in radioactive wastes 728	Positron A high-velocity anti-electron	in reporting measured values 293
radioactive decay 727	released from radioactive nuclides that	Prefixes. See Metric prefixes
Plutonium (Pu), in creation of new ele-	have too few neutrons. 437, 721	Preserving books 187
ments 52	discovery of 437	Presidential Green Chemistry Challenge
Polarity	Positron emission In radioactive nu-	Award 272, 621
of amphetamine and epinephrine	clides that have too few neutrons, the	Pressure Force per unit area. See Gas
582	conversion of a proton to a neutron,	pressure
of bonds 548–549	which stays in the nucleus, and a	Pressure cooker 544
of capsaicin 583	positron, which is ejected from the	Primary battery A battery that is not
molecular 552	nucleus. 721	rechargeable. 228
predicting in molecules 552–553	nuclear equations for 723–725	Primary protein structure The se-
solubility and 578	Positron emission tomography (PET)	quence of amino acids in a protein
Polar covalent bond A covalent bond	437, 732	molecule. 680
in which electrons are shared unequal-	Potassium-40	Principal energy level A collection of
ly, leading to a partial negative charge	radioactive decay of 721	orbitals that have the same potential
on the atom that attracts the electrons	uses for 721	energy for a hydrogen atom, except
more and to a partial positive charge	Potassium carbonate, empirical formula	for the first (lowest) principal energy
on the other atom. 74	determination 349	level, which contains only one orbital
dipole-dipole attractions and	Potassium chlorate, production and use	(1s). 420
547–548	398	Probabilities, electron behavior and 414,
predicting in molecules 548–552	Potassium hydroxide, production and use	418
Polar molecular substance, solubility and	173, 245	Products The substances that form in
578–579	Potassium nitrate	a chemical reaction. Their formulas
Polonium-210, radioactive decay of 724	production and use 237	are on the right side of the arrow in a
Polonium-218, in radioactive decay 729	in voltaic cells 226	chemical equation. 127
Poly(ethylene terephthalate) 695	Potassium perchlorate, production and	Progesterone, molecular structure of 686
Poly(vinyl chloride), PVC 694–695	use 399	Proline (Pro, P), molecular structure of
Polyatomic ion A charged collection	Potassium permanganate, production	679
of atoms held together by covalent	and use 401	Propane 82
bonds. 101–103	Potassium phosphate 141	1,2,3-Propanetriol 663
balancing equations and 129, 132	Potato chips 684	2-Propanol
formulas and names 103	Potential energy (PE) A retrievable,	hydrogen bonds in 554
with hydrogen 103	stored form of energy an object pos-	Lewis structure 84
Lewis structures 101	sesses by virtue of its position or state.	molecular structure of 554
nonsystematic names 103	chemical reactions and 263, 265	2-Propanone 666
Polyecter 692 693	chemical reactions and 263–265 electron orbitals and 420	Propionic acid
Polyester 692–693 Polyethylene 693	in formation of water 263	molecular structure of 580
Polymer A large molecule composed of	stability and 252–254	water solubility 580

treatment for cancer 731

Proportionality	Radiator coolants 578	strengths of attractions and 536
direct 487	Radioactive decay One of several	surface area and 536
inverse 487	processes that transform a radioactive	temperature and 537
Propylene	nuclide into a more stable product or	three factors that determine 536
hexane solubility of 581	products. 719	Rate of solution. See Solution, Rate of
in polypropylene 694	effects on body 730-731	Ratio
Propylene glycol, molecular structure of	rates and half-life 726-728	empirical formulas and 346
578	Radioactive decay series 728-729	molar 345
Protein Natural polypeptide. 678–679,	Radioactive emissions	neutron-to-protons 718-719
680	alpha particle 720	stoichiometric 376
alpha helix 680	beta emission 720	Rational drug design 673
beta sheet 680	gamma rays 722	Reactants The substances that change
digestion products 688	positron emission 721	in a chemical reaction. Their formulas
disulfide bond 682	Radioactive nuclide An unstable nu-	are on the left side of the arrow in a
hydrogen bond 682	clide whose numbers of protons and	chemical equation. 127
primary structure 680	neutrons place it outside the band of	equilibrium disruption and 634–
ribbon convention 681	stability. 719	636
salt bridge 682	Radioactive substances	limiting 377–381
secondary structure 680	smoke detectors, pipe joint check,	Reaction. See Chemical reaction
tertiary structure 681-682	food irradiation, radioactive trac-	Reaction Rate. See Rate of chemical
Proton A positively charged particle	ers 735	reaction
found in the nucleus of an atom. 47	uses 731–736	Rechargeable batteries 228
in artificial elements 52	Radioactive tracer A radioactive	Recycling 694
in atoms 47–48	nuclide that is incorporated into	Redox reaction. See Oxidation-reduction
in Bronsted-Lowry acids and bases	substances that can then be tracked	reaction
188	through detection of the nuclide's	Reducing agent A substance that loses
in ions 48–49	emissions. 735	electrons, making it possible for an-
in isotopes 50–51	Radiocarbon (or carbon-14) dating	other substance to gain electrons and
mass number and 51	The process of determining the age of	be reduced. 210
MRI and 732	an artifact that contains material from	Reduction Any chemical change in
nuclear stability and 718–719, 737	formerly living plants or animals by	which at least one element gains elec-
in nuclides 716–717	analyzing the ratio of carbon-14 to	trons, either completely or partially.
origin of the elements and 742	carbon-12 in the object. 733–734	209, 211
Publication, in scientific method 9	Radio waves 261, 262	Red giant stars 743
Pure substance A sample of matter that	Radium-226	Red litmus paper, detecting bases with
has constant composition. There are	half-life 727	180
two types of pure substances: ele-	radioactive decay 729	Reilly, William K. 270
ments and compounds. 71	use 736	Relative atomic mass 333
Putrescine, molecular structure of 667	Radon-222	Relative solubilities 578
0	half-life 727	Representative elements The elements
Q	lung cancer and 728	in groups 1, 2, and 13 through 18
Quantum mechanics 437	in radioactive decay series 729	(the "A" groups) on the periodic table
Quick lime, formation of 245	Rags, in paper 187	also called main-group elements. 44
Quion, 101111111011 01 21)	Rapture of the deep 596	Research, in scientific method 8
R	Rate of chemical reaction The number	Research chemist 609
D 1 1 1 1 /00	of product molecules that form (per-	Resonance The hypothetical switch-
Race cars and air density 499	haps described as moles of product	ing from one resonance structure to
Radiant energy Energy that can be de-	formed) per liter of container per	another. 465–467
scribed in terms of oscillating electric	second. 616–620	Resonance hybrid A structure that
and magnetic fields or in terms of	concentration effect 617–618	represents the average of the reso-
photons. 260–262	temperature and 616–617	nance structures for a molecule or
spectrum 262	Rate of condensation The number of	polyatomic ion. 466
the wave view 261	particles moving from gas to liquid	Resonance structures Two or more
wavelength 261	per second. 537	Lewis structures for a single molecule
Radiation	Rate of evaporation The number of	or polyatomic ion that differ in the
effects on the body 730–731	particles moving from liquid to gas	positions of lone pairs and multiple

per second. 535–537, 536–537

bonds but not in the positions of the

atoms in the structure. 466 Reversible reaction A reaction in which the reactants are constantly forming products and, at the same time, the products are reforming the reactants. 163, 621–622 in chemical equilibrium 621–625 disruption of equilibrium for 634 equilibrium constants for 626 percent yield and 382	Schrodinger, Erwin 416 Science chemistry as 7–9 existence of matter and 437 mathematics in 413 Scientific Method 7–9 Scientific model A simplified approximation of reality. See also Model 34, 56, 448 Scientific notation 4–5	citrine as 362 in furnace method 330 purifying silicon from 379–380 Silk molecular structure of 690 nylon as substitute for 690 Silver (Ag) density of 302 ion charges of 99 melting point of 314
Review Skills sections 6	Scuba diving, gas solubility and 596	Silver ion, solubility of compounds with
Rhodium, in catalytic converter 221	Sea-Nine antifoulant 5	141
Ribbon convention for proteins 681	Seaborg, Glenn 725	Silver nitrate, in precipitation reaction
Ring forms, of monosaccharides	Seawater, pH and 179	142
674–675	Sea of electrons model for metals 57	Single-displacement reaction Chemi
Roasting 384	Second (s), as unit of measurement 11 Secondary (or storage) battery A	cal change in which atoms of one element displace (or replace) atoms
Rohm and Haas Company 5	rechargeable battery. 228	of another element in a compound.
Roman numeral, in naming monatomic cations 99	Secondary protein structure The ar-	222–223
Roots of nonmetal names 92	rangement of atoms that are close to	Sinkhole 204
Roscoelite 365	each other in a polypeptide chain.	Sixth principal energy level, electron
Rounding off 293–301	Examples of secondary structures are	orbitals of 423
for addition and subtraction	alpha helix and beta sheet. 680–681	SI System of Measurement. See Interna
299–301	Second period elements, electrons in 425–427	tional System of Measurement Slaked lime 245
for multiplication and division	Selenide ion 98	Smelling salts 653
294–299 Roundup 621	Selenium	Smog
RU-486 705	bonding pattern 81	formation of photochemical
Ruby 359	covalent bond formation 453	266–267
•	ion formation 95–96	nitrogen dioxide in 629
S	most common bonding pattern 455	Smoke detectors 735
Saccharide Sugar, starch, and cellulose.	Semimetals The elements that have some but not all of the characteristics	Soap 584, 586–587 Society for Heavy-Ion Research 52
Also called carbohydrates. 674–677.	of metals. 44	Sodium (Na)
See also Carbohydrate	Serine (Ser, S)	electrolysis and 227
Saliva, tooth decay and 186	hydrogen bonds between 682	formation from sodium chloride
Salt. See Sodium chloride	molecular structure of 679	219
Salt bridge (in proteins) A covalent	Shape. See Molecular shape	ion 75–76
bond between two sulfur atoms on cysteine amino acids in a protein	Shell 420. See also Principal energy	ion formation 96
structure. 682	level Shroud of Turin 734	Sodium aluminum sulfate, in baking powder 73
Salt bridge (in voltaic cells) A device	Side-chain, in anion acid 678	Sodium bromide, use 600
used to keep the charges in a voltaic	Significant figures The number of	Sodium carbonate
cell balanced. 226	meaningful digits in a value. The	reaction with acid 175
Salt taste 177	number of significant figures in a	uses 175
Salt water separation 40 San Simeon, California, protection from	value reflects the value's degree of un- certainty. A larger number of signifi-	Sodium chlorate, production and use 244
acid rain in 167	cant figures indicates a smaller degree	Sodium chloride
Saturated solution A solution that has	of uncertainty. 293–301	electrolysis and 227
enough solute dissolved to reach the	counting the number of 295–296	formation 76
solubility limit. 592, 592–593	zeros and 296	formula mass of 340
dynamic equilibrium and 588–593	Silicon (Si) 126	formula unit of 339
formation of 592–593	electronics grade 379	oxidation-reduction and 208–209
Saturated triglyceride A triglyceride	metallurgical grade 379	solution in water 593
with single bonds between all of the carbon atoms. 683	purifying 379–380 from silicon dioxide 377	solution in water 133–135 structure of 100–101, 101
Scale, calcium carbonate in 144	Silicon dioxide	taste of 177

Sodium chromate 384	also be called homogeneous mixtures.	Harmless Dietary Supplements or
Sodium dichromate, production and use	chemical reactions in 573	Dangerous Drugs 687
400, 408	dynamic equilibrium and 588-593	Molecular Shapes, Intoxicating
sodium dodecyl sulfate (SDS), as deter-	formation of 576–577	Liquids, and the Brain 89
gent 587	of ionic compounds 133–135	Olestra and Low-Fat Potato Chips
Sodium fluoride, in toothpaste 95	molarity and 385–392	684–685
Sodium hydrogen carbonate	rate of 589–592	Other Ozone-Depleting Chemicals
production and use 175, 241	agitation 591	272
reaction with acids 175	factors that effect 589	Oxidizing Agents and Aging 212
Sodium hydrogen sulfate, production	surface area 589–590	Precipitation, Acid-Base Reactions,
and use 407	temperature effect 592	and Tooth Decay 186
Sodium hydroxide	saturated 592–593	Recycling Synthetic Polymers 694
aqueous solution of 173 formation 101	solute and solvent 136	Rehabilitation of Old Drugs and
in neutralizing phosphoric acid 390	unsaturated 592 why form 574–577	Development of New Ones 673
reaction with nitric acid 181–185	Solvent The liquid in a solution of a gas	Safe and Effective? 354
uses of 101, 173	in a liquid. The liquid in a solution of	Saving Valuable Books 187
Sodium hypochlorite, production 509,	a solid in a liquid. The major compo-	The Big Question - How Did We
552, 560, 580, 581	nent in other solutions. 136	Get Here? 640
Sodium ions 49	Sour taste 177	The Origin of the Elements 742
taste and 177	Space-filling model A way of repre-	Wanted: A New Kilogram 11
Sodium perbromate, production and use	senting a molecule to show a some-	Why Create New Elements? 52
243	what realistic image of the electron-	Why Does Matter Exist, and Why
Sodium sulfate, production and use 243,	charge clouds that surround the	Should We Care About This
517	molecule's atoms. 54, 86	Question? 437
Sodium tripolyphosphate, production	Spandex®, synthesis of 353	Zinc-Air Batteries 229
and use 410	Special conditions, in chemical equations	
Soft drink, why bubbles form 596	127–128	Spectator ions Ions that play a role in
"Solar system" model of the atom 414	Special topics	delivering other ions into solution to
Solid The state in which a substance	Acid Rain 167	react but that do not actively partici-
has a definite shape and volume at a	Air Pollution and Catalytic Convert-	pate in the reaction themselves. 139
constant temperature. 34–35	ers 221	Spectrum, of radiant energy 261–262
densities of 301-302	A Greener Way to Spray Paint 514	Spin. See Electron spin
expansion when heated 35	A New Treatment for Brain Cancer	Spinels 359
heterogeneous equilibrium and	741	Spodumene 365
630–631	Be Careful with Bleach 188	Spray paint 514
Solid acid, in meals ready to eat 573	Big Problems Require Bold Solu-	Stability A relative term that describes
Solid elements 45, 56–57	tions - Global Warming and	the resistance to change. 54, 252–
Solubility The maximum amount of	Limiting Reactants 384	254
solute that can be dissolved in a given	Chemistry and Your Sense of Taste	Standard kilogram 11
amount of solvent. 578–584	177	Standard pressure 503
gas 594–595	Chemistry Gets the Bad Guys 541	Standard temperature 503
guidelines 578 like dissolves like 578–579	Gas Solubility, Scuba Diving, and Soft Drinks 596	Standard temperature and pressure (STP)
soaps and detergents and 586–587	Global Warming, Oceans, and CO2	503
in water 140–141, 593	Torpedoes 597	gas stoichiometry and 503
guidelines 141	Green Chemistry 5	gas stoichiometry for conditions
Solute The gas in a solution of a gas in	Green Chemistry - Making Chemi-	other than 504–505
a liquid. The solid in a solution of a	cals from Safer Reactants 351	Standing waves 414–416
solid in a liquid. The minor compo-	Green Chemistry - Substitutes for	Starch 674, 676
nent in other solutions. 136	Chlorofluorocarbons 272	Stars, element formation and 743
gas as 594–595	Green Chemistry - The Develop-	State, physical 127
in saturated solution 588	ment of New and Better Cata-	Stationary wave 415
Solution A mixture whose particles are	lysts 621	Steam re-forming 396, 622
so evenly distributed that the relative	Green Decaf Coffee 515	Stearic acid
concentrations of the components are	Hard Water and Your Hot Water	molecular structure of 664
the same throughout. Solutions can	Pipes 144	solubility of 583

Step-growth (or condensation) poly-	calculating molecular formulas 352	Sucrase, in digestion 688
mer A polymer formed in a reaction	calculations using unit analysis 308	Sucrose, solubility in water 593
that releases small molecules, such as	classification of matter 72	Sugar 674–676
water. This category includes nylon	combustion reaction 220	rate of solution 590
and polyester. 691	converting between mass of element	taste of 177
Sterno® 447	and mass of compound contain-	Sulfate ion, solubility of compounds
Steroid Compounds containing a	ing the element 345	with 141
four-ring structure. 685–686	drawing Lewis structures from for-	Sulfur 43–44
Stirring, rate of solution and 589–591	mulas 456–457	bonding pattern 81
Stockings 690	electronegativity, types of chemical	combustion and 219
Stoichiometric ratio 376	bonds, and bond polarity 550	covalent bond formation 453
Stoichiometry. See Equation	electron configurations and orbital	ion formation 95–96
stoichiometry	diagrams 431, 456	most common bonding pattern 455
Stomach	equation stoichiometry 372–373,	production 244
hydrochloric acid in 506	391, 507–508	use and production 525
role in digestion 689	equation stoichiometry problems	Sulfuric acid 166
Stomach acid 506	391	acid rain and 167
Storage battery 228	identification of strong and weak	in acrylamide synthesis 621
Stratosphere The second layer of the	acids and bases 176	forming name of 169
earth's atmosphere. It extends from	limiting reactant problems 380	as oxyacid 162
about 10 km to about 50 km above	predicting molecular geometry 472	production 238
sea level. 268	predicting precipitation reactions	reaction with sodium hydroxide
destruction of ozone in 269-271	and writing precipitation equa-	184
ozone hole in 271	tions 142	as strong acid 166
removal of UV radiation in 269	rounding off numbers calculated	uses 166
Strong acid An acid that donates its H ⁺	using addition and subtraction	Sulfur dioxide
ions to water in a reaction that goes	299	acid rain and 167
completely to products. Such a com-	rounding off numbers calculated	air pollution and 523
pound produces close to one H ₃ O ⁺	using multiplication and division	in combustion reactions 219
ion in solution for each acid molecule	295	as pollutant and removal 408
dissolved in water. 163, 165	using Dalton's Law of Partial Pres-	Sulfur hexafluoride, threshold limit
identifying 176	sures 512	value, or TLV 522
reactions of strong base with	using the combined gas law equa-	Sulfur trioxide, in acid rain 167
181–185	tion 500	Sun, nuclear fusion and 742
Strong base A substance that generates	using the ideal gas equation 495	Supercritical carbon dioxide
at least one hydroxide ion in solution	writing complete electron configura-	decaffeinating coffee and 515
for every unit of substance added to	tions and orbital diagrams for	spray paint and 514
water. 173	uncharged atoms 431	Supercritical fluid 514
identifying 176	writing equations for combustion	Supernovas 743
reactions of strong acids with	reactions 220	Super glue 473
181–185	Styrene, in polystyrene 694	Surface area, rate of solution and
Strong force The force that draws	Sublevel or subshell Orbitals that have	589–590
nucleons (protons and neutrons)	the same potential energy, same size,	Sweet taste 177
together. 718	and same shape. 421	Symbols
Strontium-90 730	Sublimation, of dry ice 255, 256	for elements 41
Studying chemistry 5	Subshell, of atomic orbitals 421	for nuclides 716
Study Sheets	Substance, base unit of 10–11	Synthesis gas 622
abbreviated electron configuration	Substances	Synthesis reactions 218
433–436	densities of common 302	Synthetic polymers 690–695
assignment of oxidation numbers 214	equation stoichiometry and 368–375	s block, on peridoic table 428–429
balancing chemical equations 129	hydrophilic and hydrophobic 582	T
basic equation stoichiometry - con-	solubilities of 578–579	T
verting mass of one substance	uses for radioactive 731–734	Tanzanite 363
in a reaction to mass of another	Substrate A molecule that an enzyme	Taste 177
372–373	causes to react. 690	Technical University of Munich 641

Subtraction, rounding off and 299-301

Television waves 262

calculating empirical formulas 348

Thionyl chloride, production and use

Tellurium (Te), bonding patterns of 457	408	Tristearin 584
Temperature A measure of the average	Thoburn, Steve 292	Tritium 50–51
internal kinetic energy of an object.	Thortveitite 364	Troposphere The lowest layer of the
17–19, 259	Threonine (Thr, T), molecular structure	earth's atmosphere. It extends from
absolute zero 18	of 679	the surface of the earth to about 10
base unit of 11	Threshold limit value, or TLV 522	km above the earth. 268
boiling-point 544	Time, base unit of 11	Trypsin 688
Celsius scale 18	Tin(II) sulfide, melting point of 314	Tryptophan (Trp, W), molecular struc-
coldest 19	Tincture of iodine 556	ture of 679
common scales 19	Tin isotopes 51–52	Tungsten (W), in light bulb filaments
in condensation 534	Titanium(IV) oxide	496
critical 514	production 528	Tyrosine (Tyr, Y), molecular structure
density and 301	production and use 411	of 679
effect on rate of solution 592	Titanium (Ti) 56	\mathbf{U}
equilibrium constants and 632–633	production and use 247	U
equilibrium vapor pressure and	Titanium carbide 381	Ultraviolet radiation 262
540–541	Titanium dioxide 632	Umami taste 177
in evaporation 536–537	production and use 238	Uncertainty 21
Fahrenheit scale 18–19	Titration, Web site for 392	in measurements 20–22
gases and 485 Kelvin scale 18–19	Tooth doory and have reactions and 186	significant figures and 293-301
	Tooth decay, acid-base reactions and 186 Tooth enamel, composition of 186	Unified mass unit. See Atomic mass unit
measuring 18 normal boiling-point 545	Torr, as unit of pressure 485	Unit A defined quantity based on a
pressure and 488	Trailing zeros, measurement uncertainty	standard. 9-18, 1-3
range of 19	and 22	abbreviations 1
rate of reaction and 616–618	Transition metals The elements in	conversions among 288-314
rate of solution and 592	groups 3 through 12 (the "B" groups)	of energy 257
standard 503	on the periodic table. 44	in international system of measure-
volume and 489	as catalysts 620	ment 10-12
Temperature conversions 312–314	in catalytic converters 221	length 14
Terephthalic acid, in plyester formation	in periodic table 44	mass 16
692	Transition state, in chemical reactions	the importance of putting into equa-
Tertiary protein structure The overall	611	tions 497
arrangement of atoms in a protein	Triacylglycerol 584–585	volume 15
molecule. 681	Triangular planar. See Trigonal planar	United States, ozone concentrations in
Testosterone 686	Triglyceride A compound with three	267
Tetraboron carbide, production and use	hydrocarbon groups attached to a	Unit analysis A general technique for
400, 401	three carbon backbone by ester func-	doing unit conversions. 288–292,
Tetrachloroethene 375	tional groups. 584-585, 683-685	330–334, 342–350, 368–372, 376–
Tetrahedral molecules 86, 468-469	Trigonal planar (often called triangular	380, 414–418, 424–428, 448–452
Tetrahedral The molecular shape that	planar) The geometric arrangement	equation stoichiometry and 370
keeps the negative charge of four	that keeps three electron groups as far	gas stoichiometry and 505
electron groups as far apart as pos-	apart as possible. It leads to angles of	Study Sheet 308–309
sible. This shape has angles of 109.5°	120° between the groups. 470	summary of 308–312
between the atoms. 86	Trigonal pyramid The molecular ge-	Unit conversions 288–292, 330–334,
Tetramethylene glycol 354	ometry formed around an atom with	342–346, 346–350, 368–372, 376–
Tetrapeptide 680	three bonds and one lone pair. 469	380, 414–418, 424–428, 448–452
Tetraphosphorus decoxide, in furnace	Trimethylamine 668	"something per something" 311
method 330	2,2,4-Trimethylpentane 661	common 308–312
Tetraphosphorus trisulfide 131	Trinitrotoluene (TNT) 662–663	density and 303, 310, 501-506,
Thalidomide 364, 673	Triple bond A link between atoms	551
Theoretical yield The calculated maxi-	that results from the sharing of six	English-metric 291–292, 310
mum amount of product that can	electrons. It can be viewed as three 2-	metric-metric 289–291, 310
form in a chemical reaction. 382	electron covalent bonds. 83, 451	percentage and 307, 311
Thermometers 18–19 Thiographic 308	Triprotic acid An acid that can donate	Universal gas constant, R The constant in the ideal gas equation 494
Thiocyanate 398	three hydrogen ions per molecule in a	in the ideal gas equation. 494

reaction. 163

in gas stoichiometry 505–509

in ideal gas equation 494–499	and p electrons for an atom. 79, 449	measurement, graduated cylinder
Universe	electron dot symbol 79–80	21
hottest temperatures in 19	Valine (Val, V), molecular structure of	number of gas particles and 491
origin of elements in 742–743	678	pressure and 486–487
University of California, Berkeley 725	Value A number and unit that together	range of 16
University of Regensberg 641	represent the result of a measurement	temperature and 489
Unpaired electrons 79	or calculation. 10	Volume unit, liter 12
in valence-bond model 449	Vanadium(V) oxide, in catalytic con-	volume umit, men 12
Unsaturated solution A solution that	verter 221	\mathbf{W}
has less solute dissolved than is pre-	Vapor A gas derived from a substance	
dicted by the solubility limit. 592	that is liquid at normal temperatures	Wächtershäuser, Günter 641
Unsaturated triglyceride A triglyceride	and pressures. It is also often used to	Water 70
that has one or more carbon-carbon	describe gas that has recently come	acids and 160-161, 163-164
double bonds. 683	from a liquid. 534	ammonia and 173–174
Uranium 381	Vaporization The conversion of a	attractions 88
alpha emission 720	liquid to a gas. 37	bases and 173
production 402	Vapor pressure. See Equilibrium vapor	boiling point of 18–19, 545
uranium-238 decay series 729	pressure	as compound 71
Uranium(IV) oxide 381	Vegetable oil 585	-
Uranium-234 740	Velocity	condensation of 534–535
Uranium-235 740	of gas particles 484	in condensation reactions 689
enrichment 381	kinetic energy and 251	covalent bond formation 452
in fission reactors 740	of particles in evaporation 535	density of 302
half-life 727	Vinegar	dissolving sodium chloride in
Uranium-238	acetic acid in 162	134–135
in fission reactors 740	taste of 177	evaporation of 535
half-life 727	Vinyl chloride, in poly(vinyl chloride)	hard 144
nuclide symbol 717	694	heavy 313
radioactive decay series 729	Visible fingerprints 541	hydrogen bonds in 554
Uranium-239	Visible light 262	ionizing radiation and 730–731
in nuclear reactors 740	Vitamin C, aging and 212	Lewis structure 81
in nuclear fission 738	Vitamin E, aging and 212	liquid 88–89
Uranium hexafluoride 367, 381	Volatile organic compounds (VOCs)	•
Urea 411	514	melting point of 18–19
use and production 526, 654	Voltage 227	mixing with ethanol 576–577
UV-A Ultraviolet radiation in the range	Voltaic cell A system in which two	molecular shape 87–88, 469
of about 320 to 400 nm wavelengths.	half-reactions for a redox reaction	in nylon formation 691
This is the part of the ultraviolet	are separated, allowing the electrons	pH of 179
spectrum that reaches the earth and	transferred in the reaction to be	as polar molecule 88, 553
provides energy for the production of	passed between them through a wire.	producing hydrogen gas from
vitamin D. 268	224–229	621–623
	anode 225	in protein formation 680
UV-B Ultraviolet radiation in the range of about 290 to 320 nm wavelengths.	cathode 225	rate of solution in 589–593
Most of this radiation is filtered out	common examples 229	solubility in 578–583
	electrode 225	structure of 87–88
by the earth's atmosphere, but some reaches the surface of the earth. 268	electrolyte 226	Water dissociation constant (K _w) The
	primary battery 228	equilibrium constant for the reaction:
UV-C Ultraviolet radiation in the range	salt bridge 226	$H_2O(l) \rightleftharpoons H^+(aq) + OH^-(aq)$ 632
of about 40 to 290 nm wavelengths.	secondary battery 228	
Almost all UV-C is filtered out by our	zinc-air batteries 229	Water purification 374
atmosphere. 268	Volume (V) 15–16	Water solubility 140–141
${f V}$	density and 301	Water treatment 202
•	English-metric conversion factors	Wave
Valence-bond model 449–454	for 292	electrons as 416–423
Valence electrons The electrons that are	of gases 485	for guitar strings 414
most important in the formation of	of ideal gas particles 485	radiant energy as 260–262
chemical bonds. The highest energy s	or idear gas particles 40)	standing 414-415

XV/ C A	C
Waveform A representation of the	for gas stoichiometry shortcut 506
shape of a wave.	for how addition polymers are made
of electron 416	693
of guitar strings 415	for London forces and polar mol-
Wavelength The distance in space over	ecules 558
which a wave completes one cycle of	for mixtures and equation
its repeated form. 261–262 Weak acid A substance that is incom-	stoichiometry 375
	for polyatomic ions 103 for predicting molecular polarity
pletely ionized in water due to the reversibility of the reaction that forms	553
hydronium ions, H_3O^+ , in water.	for predicting relative strengths of
Weak acids yield significantly less	attractions 560
than one H_3O^+ ion in solution for	for resonance 467
each acid molecule dissolved in water.	for temperature effect on solid and
163, 164	gas solubility 597
Weak base A substance that produces	for writing complete ionic and net
fewer hydroxide ions in water solution	ionic equations 143
than particles of the substance added.	Weight A measure of the force of gravi-
174–175	tational attraction between an object
ammonia as 173–174	and a significantly large object, such
identifying 176	as the earth or the moon. 16
Weather balloon 502	Weighted average A mass calculated
Web site	by multiplying the decimal fraction
for acid-base titration 392	of each component in a sample by its
for acid nomenclature 169	mass and adding the results of each
for animation of acid-base reaction	multiplication together. 331
185	Wine
for animation of a single-displace-	pH of 179
ment reaction 222	sediment formation 579
for animation of dissolving ethanol	Work What is done to move an object
in water 577	against some sort of resistance. 250
for animation of element structure	
56	X
for animation of precipitation reac-	X-rays 262
tion 140	X-ray crystallography 673
for animation of solution of sodium	Xenon (Xe), reactions 242
chloride 136	Xenon difluoride 397
for animation of strong and weak	
acids 166	Y
for animation of the particle nature	V: 11 C A - 1 : 11 T1 : 1 : 11
of matter 38	Yield. See Actual yield; Theoretical yield;
for animation of water structure 89	Percent yield
for balancing redox equations 218, 222	${f Z}$
for calculating element percentages	Zeros and significant figures 296
346	Zinc-air batteries 229
for changing volume and gas reac-	Zinc (Zn) 56
tions 637	batteries and 224–227
for combustion analysis 353	reaction with copper sulfate
for conversion between element	222–223
names and formulas 41	single-displacement reaction and
for different electron configurations	222–223
436	voltaic cells and 224-226
for enzyme mechanism 690	Zinc oxide
for equilibrium calculations, includ-	in book preservation 187
ing pH 633	oxidation-reduction and 208-209

in zinc-air batteries 229

for isotope notation 52