
### Chapter 8 Unit Conversions

### An Introduction to Chemistry by Mark Bishop

### Chapter Map



#### Unit Conversions

All science requires mathematics. The knowledge of mathematical things is almost innate in us. . . [Mathematics] is the easiest of sciences, a fact which is obvious in that no one's brain rejects it...

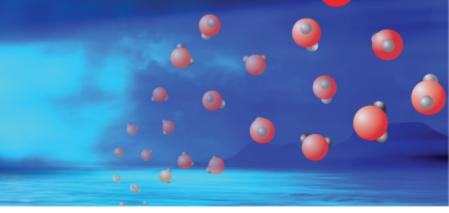
Roger Bacon (c. 1214-c. 1294)

Stand firm in your refusal to remain conscious during algebra. In real life, I assure you, there is no such thing as algebra.

Fran Lebowitz (b. 1951)

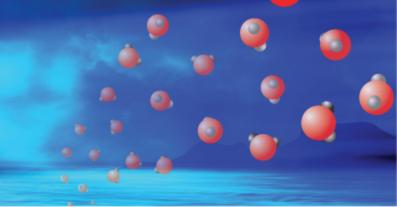
### Unit Analysis Step 1

- Step 1: State your question in an expression that sets the unknown unit equal to the value given.
  - Start with the same number of units as you want.
    - If you want a single unit, start with a value that has a single unit.
    - If you want a ratio of two units, start with a value that has a ratio of two units, or start with a ratio of two values, each of which have one unit.
  - Put the correct type of unit in the correct position.


### Unit Analysis Step 2

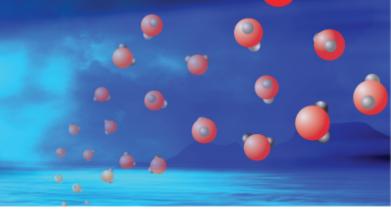
- Step 2: Multiply the expression to the right of the equals sign by one or more conversion factors that cancel the unwanted units and generate the desired unit.
  - If you are not certain which conversion factor to use, ask yourself, "What is the fundamental conversion and what conversion factor do I use for that type of conversion?"

#### Unit Analysis Steps 3 & 4


- Step 3: Check to be sure you used correct conversion factors and that your units cancel to yield the desired unit.
- Step 4: Do the calculation, rounding your answer to the correct number of significant figures and combining it with the correct unit.

#### English-Metric Conversion Factors



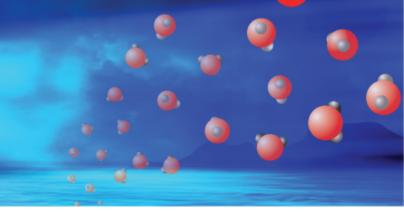

| Type of Measurement | Probably<br>Most Useful<br>to Know | Others Useful to Know |           |          |
|---------------------|------------------------------------|-----------------------|-----------|----------|
| Length              | 2.54 cm                            | 1.609 km              | 39.37 in. | 1.094 yd |
|                     | 1in.                               | 1mi                   | 1m        | 1m       |
| Mass                | 453.6 g                            | 2.205 lb              |           |          |
|                     | 1lb                                | 1kg                   |           |          |
| Volume              | 3.785 L                            | 1.057 qt              |           |          |
|                     | 1gal                               | 1L                    |           |          |

# Rounding Answers from Multiplication and Division Step 1



- Step 1: Determine whether each value is exact, and ignore exact values.
  - Exact values
    - Numbers that come from definitions are exact.
    - Numbers derived from counting are exact.
  - Do Step 2 for values that are not exact.
    - Values that come from measurements are never exact.
    - We will assume that values derived from calculations are not exact unless otherwise indicated.

# Rounding Answers from Multiplication and Division Step 2




- Step 2: Determine the number of significant figures in each value that is not exact.
  - All non-zero digits are significant.
  - Zeros between nonzero digits are significant.
  - Zeros to the left of nonzero digits are not significant.
  - Zeros to the right of nonzero digits in numbers that include decimal points are significant.
  - Zeros to the right of nonzero digits in numbers without decimal points are ambiguous for significant figures.

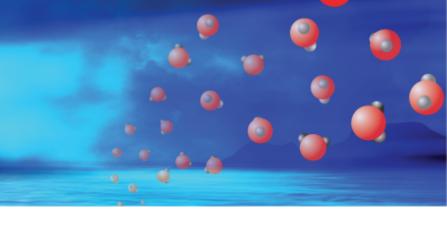
# Rounding Answers from Multiplication and Division Step 3

- Step 3: When multiplying and dividing, round your answer off to the same number of significant figures as the value used with the fewest significant figures.
  - If the digit to the right of the final digit you want to retain is less than 5, round down (the last digit remains the same).
  - If the digit to the right of the final digit you want to retain is 5 or greater, round up (the last significant digit increases by 1).

## Rounding Answers from Addition and Subtraction



- Step 1: Determine whether each value is exact, and ignore exact values.
  - Skip exact values.
  - Do Step 2 for values that are not exact.
- Step 2: Determine the number of decimal positions for each value that is not exact.
- Step 3: Round your answer to the same number of decimal positions as the inexact value with the fewest decimal places.


## Density

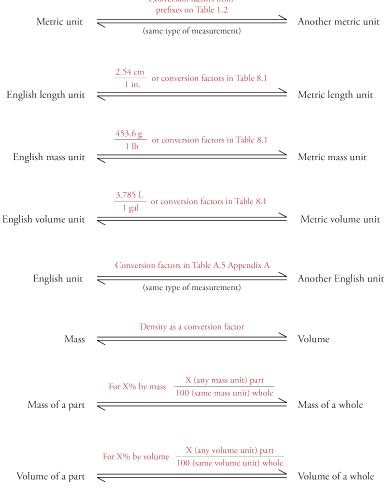
 Mass density is mass divided by volume. It is usually just called density.

Density = 
$$\frac{\text{mass}}{\text{volume}}$$

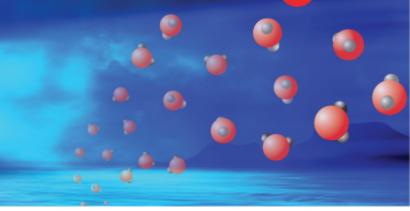
 It can be used as a unit analysis conversion factor that converts mass to volume or volume to mass.

## Percentage and Percentage Calculations




 Mass percentages and volume percentage can be used as unit analysis conversion factors to convert between units of the part and units of the whole.

For X% by mass  $\frac{X \text{ (any mass unit) part}}{100 \text{ (same mass unit) whole}}$ 


For X% by volume  $\frac{X \text{ (any volume unit) part}}{100 \text{ (same volume unit) whole}}$ 

#### Conversion Types





#### Temperature Conversions



? °F = --- °C 
$$\left(\frac{1.8 \text{ °F}}{1 \text{ °C}}\right)$$
 + 32 °F

? °C = 
$$(--- °F - 32 °F) \left(\frac{1 °C}{1.8 °F}\right)$$

$$? K = --- °C + 273.15$$

$$? \, ^{\circ}C = --- K - 273.15$$